COMP 605:

Graduate Seminar

in Learning Theory

Lecture 1

Maryam Aliakbarpour

Fall 2024

Today's lecture

- Introduction
- Class format
- Policies
- Introduction to the topic

Introduction

Instructor: Maryam Aliakbarpour

Email: maryama@rice.edu

Office hour: By appointment (email me)

Lectures: Wednesdays 4-5:15pm, Duncan Hall 1075

Website: https://maryamaliakbarpour.com/courses/F24/index.html+ Canvas

Please turn on your notification on Canvas!

Class objectives

Studying fundamental problems in learning theory from a new perspective:

- Computational aspects: limited time or memory
- Societal aspects: privacy and fairness

Practicing research soft skills:

- How to approach a problem
- How to review / write a paper
- Presenting technical material

We will return to this!

Class Prerequisites

- solid understanding of mathematical proofs
- basic algorithms, and probability
- A graduate level course in algorithms or machine learning is recommended.

Class format

- In each class, we focus on one topic / one paper.
- Before class:
 - Reading assignment: read the paper
 - Provide a review on canvas
- Presentation:
 - A student presents a topic or a paper (1hr presentation)
- Questions / Discussion

Class format

- You may also pick papers that are not listed but are relevant to the topic of the class.
- Sign up for your presentation <u>here</u>, and fill out t<u>his form by Thursday (9/12)</u>.

Class format: presentation

A 1-hr long presentation:

- Introduction: What and why?
- Related work
- Problem definition
- Solution
- Technical part*

Class format: presentation

Practice your talk! (many times)

(Optional) Meet with me on Monday or Tuesday before your presentation.

• Set an appointment (maryama@rice.edu)

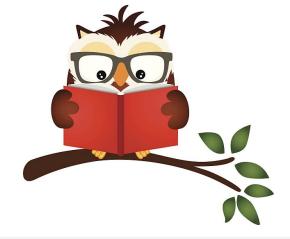
Class format: reading assignment

Read the paper before class, and be present.

Think of it as a mini-review.

Canvas assignment:

- Summary of the paper.
- Your opinion: Strengths / Limitations. Next steps?



Class format: class project

Only if you register for 3-credit

Two options:

- Survey of results
- Research project

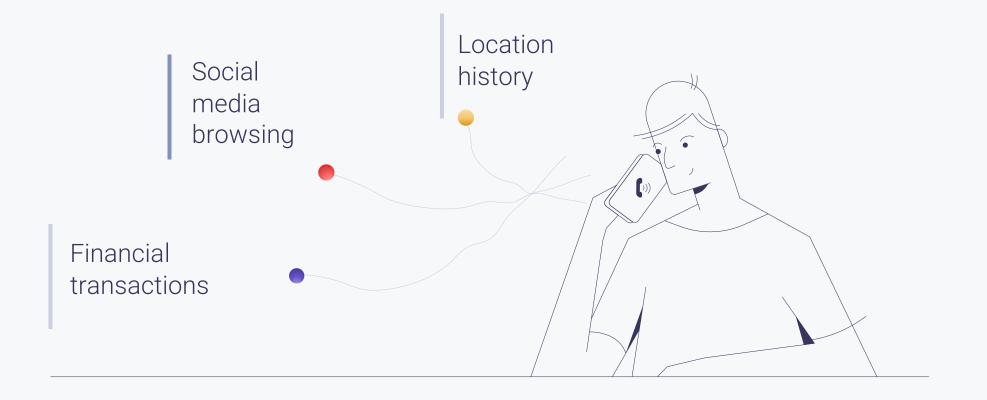
Policies

Read Syllabus

- An inclusive environment
- Rice Honor Code
- Disability Resource Center
- Wellbeing and Mental Health
- Title IX Responsible Employee Notification

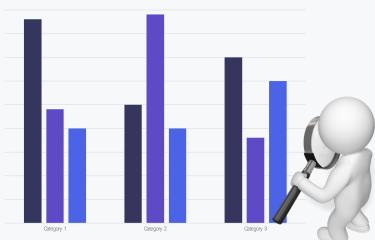
Our topic

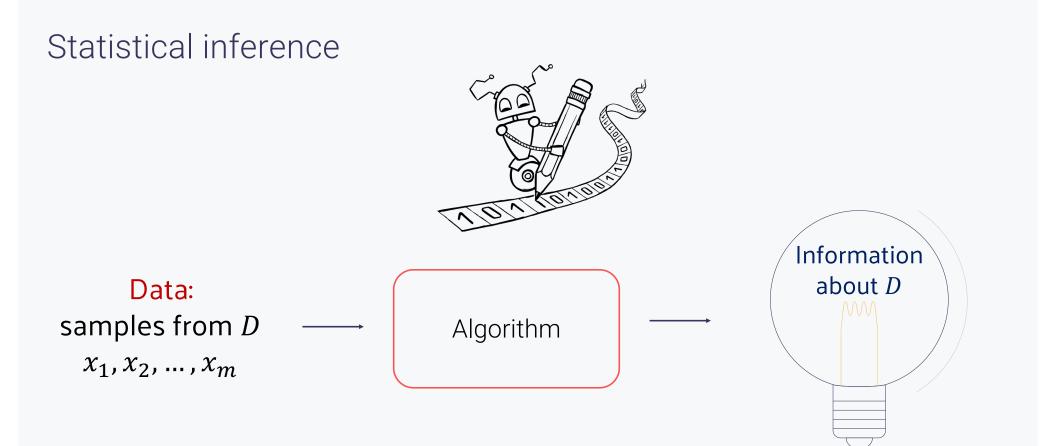
Our daily activities produce vast amounts of data.

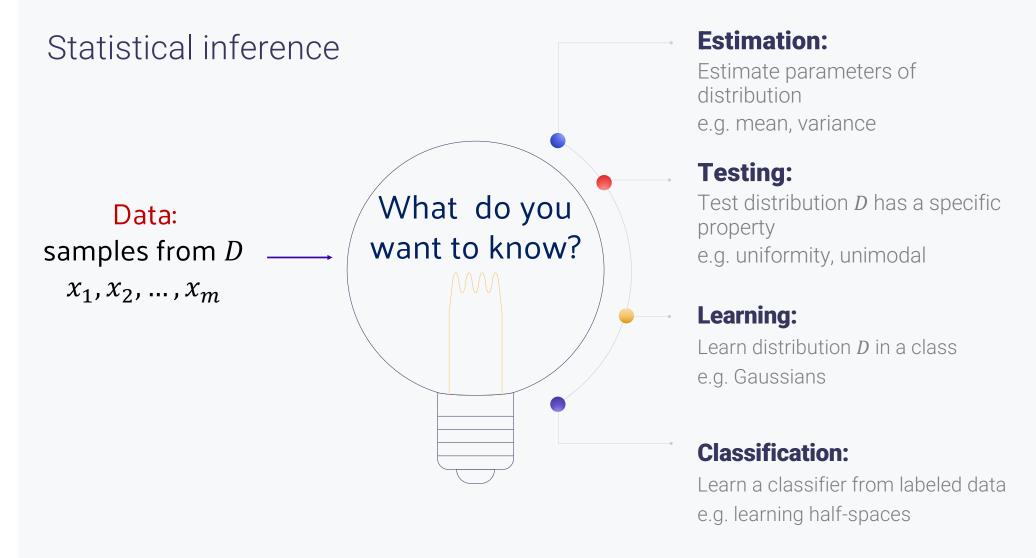


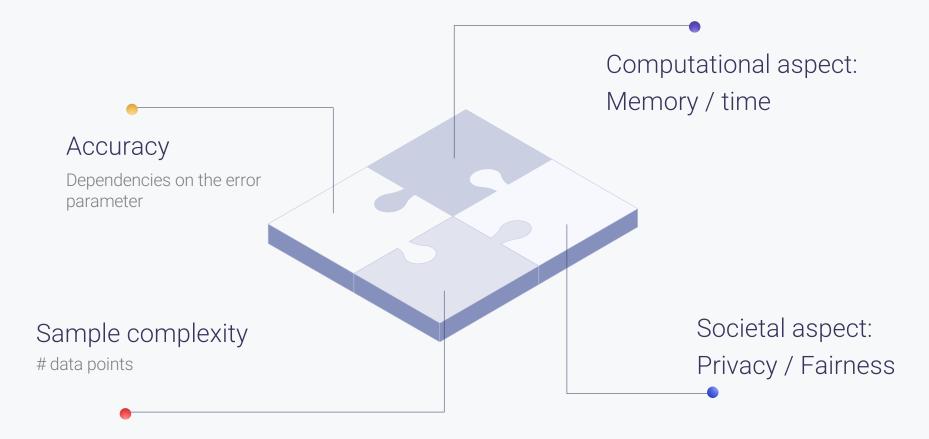
Our daily activities produce vast amounts of data.

How can we extract meaningful information?









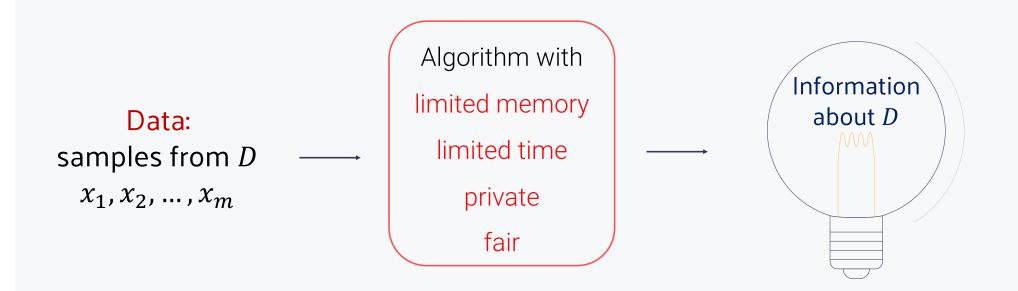
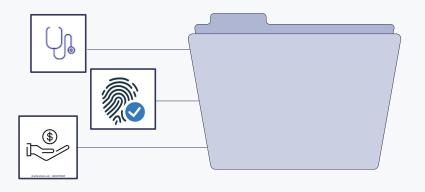


Image from: https://tilics.dmi.unibas.ch/the-turing-machine

This talk

Part I: Inference with privacy

Part II: Inference with limited memory



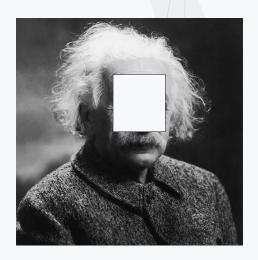
Sensitive data requires privacy preserving algorithms.

Privacy

Learn about community, but not individuals

Anonymization \neq not-identifiable

re-identification of Massachusetts Governor's medical data within an insurance data set



Global information leaks information about individuals!

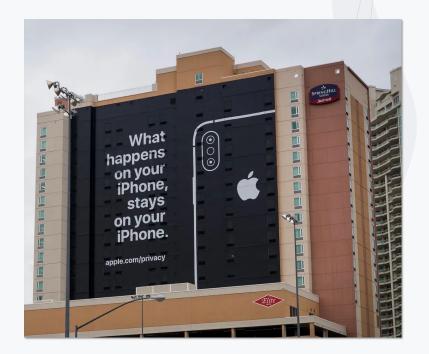
Example: Average net worth of patients in oncology

Differential privacy

Mathematical formulation

Not ambiguous Irrefutable claims

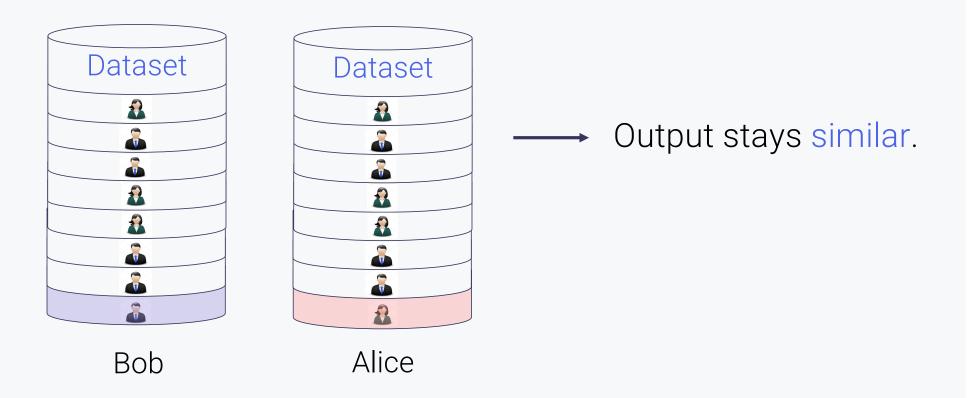
Extensive use in **practice**: Apple, Google, US census



Differential privacy (central)

Differential privacy

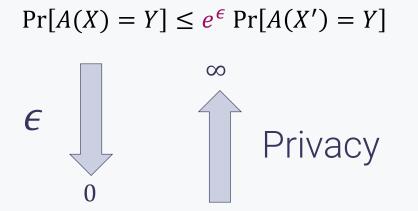
Output should not depend on a single data point.



Differential privacy

 ϵ -differentially private algorithm A:

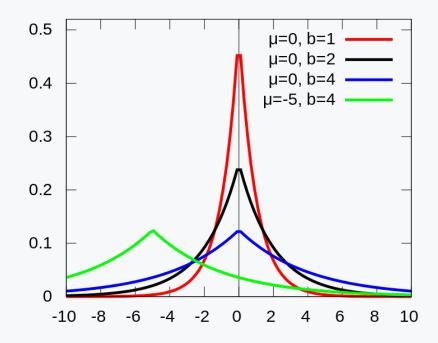
- ► Any possible output Y
- ▶ Two neighboring datasets *X*, *X*' s.t. they differ in one sample



[Dinur and Nissim'03, Dwork, McSherry, Nissim, and Smith'06, Dwork'06]

Laplace Mechanisms

Laplace distribution



• PDF at point
$$x: \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

- Expected value: 0
- Variance: $2b^2$
- CDF: If $Y \sim Lap(b)$ then $\Pr[|Y| \ge t] = e^{-t/b}$

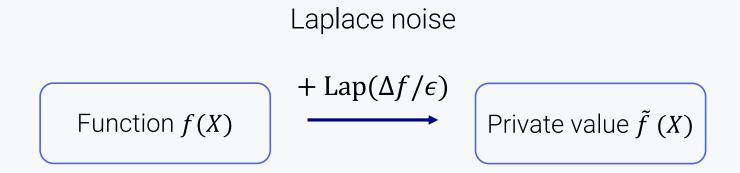
ℓ_1 -sensitivity

For two neighboring datasets X, X' such that |X - X'| = 1, the sensitivity of f is:

$$\Delta f \triangleq \max_{X,X'} |f(X) - f(X')|$$

Laplace Mechanism

Can make $f \ a \ \epsilon$ -differentially private function by adding Laplace noise to it.



Usage

Works really well when the sensitivity is small (small noise):

- Count queries
- Histograms
- Low sensitivity statistics: #unseen

Provable guarantees

Theorem: Laplace mechanism is ϵ -differentially private.

Theorem: Laplace mechanism is accurate. For all $\delta \in (0, 1]$:

$$\Pr\left[\left|f(x) - \tilde{f}(x)\right| \ge \frac{\ln\left(\frac{1}{\delta}\right)\Delta f}{\epsilon}\right] \le \delta$$

This talk

Part I: Inference with privacy

Part II: Inference with limited memory

Why limited memory?

Size of working memory < size of data

Facilitates communication and processing of distributed data

Insightful: what summarizes the data

Memory restriction can affect learning drastically!

- [Raz, FOCS. 2016]
 - Parity learning problem
- [Chien, Ligett, McGregor. ITCS 2010] Robust statistics and distribution testing
- [Diakonikolas, Gouleakis, Kane, Rao. COLT 2019] Distribution testing
- [Sharam, Sidford, Valiant. STOC 2019] Memory-Sample Tradeoffs for Linear Regression
- [Brown, Bun, Smith. COLT 2022]

Memory lower bounds for sparse linear predictors

And many more...

Memory restriction can affect learning drastically!

[Raz'16]: Fast learning requires good memory!

Parity learning problem:

- Goal: find $w \in \{0,1\}^n$
- Samples: a random $x \in \{0,1\}^n$ and $w \cdot x$

By Gaussian elimination $O(n^2)$ bits of memory O(n) samples [Raz'16]: Any algorithm using

 $\leq \frac{n^2}{25}$ bits of memory

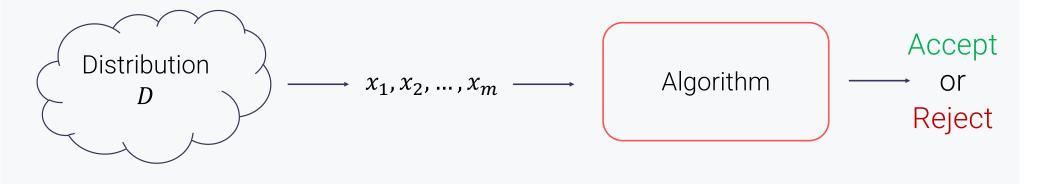
needs exponentially many samples

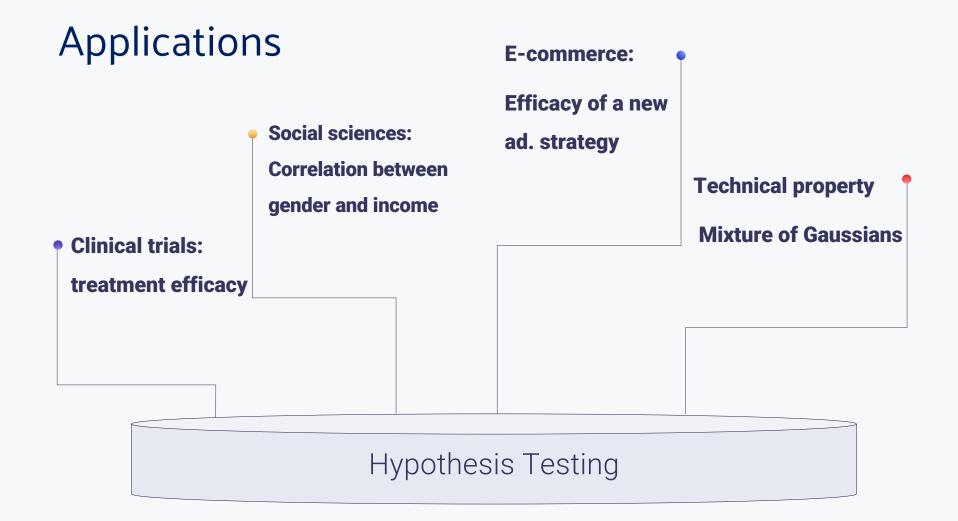
Example I: Private Hypothesis Testing

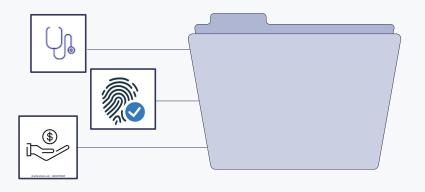
Joint work with Daniel Kane (UCSD), Ilias Diakonikolas (UW Madison), Ronitt Rubinfeld (MIT)

Hypothesis testing

Does *D* have a particular property or not?







Sensitive data requires privacy preserving algorithms.

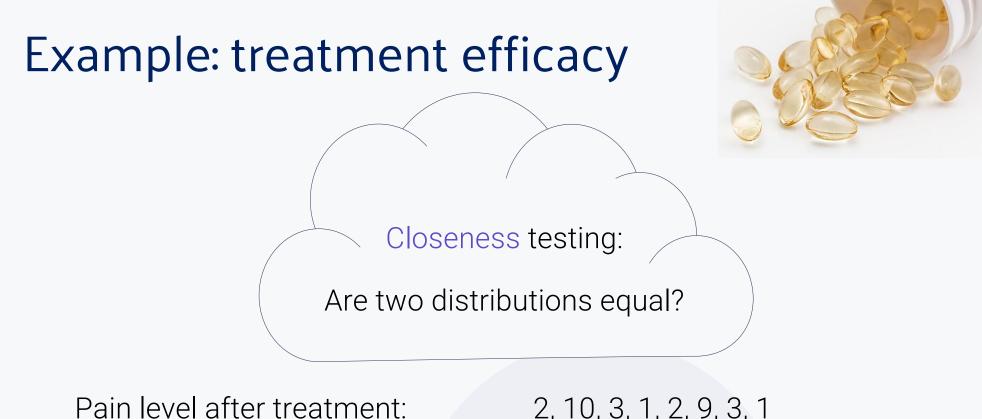
Goal:

Design testing algorithms:

- Accurate
- Optimal number of data points
- Privacy preserving

Active area of research: [Rogers, Roth, Smith, Thakkar'16], [Gaboardi, Lim, Rogers, Vadhan'16], [Cai, Daskalakis, Kamath'17], [A, Diakonikolas, Rubinfeld'18], [Acharya, Sun, Zhang'18]: [Bun, Kamath, Steinke, Wu'19], [Canonne, Kamath, McMillan, Smith, Ullman'19], [Canonne, Kamath, McMillan, Ullman, Zakynthinou'20], [Vepakomma, Amiri, Canonne, Raskar, Pentland'22]

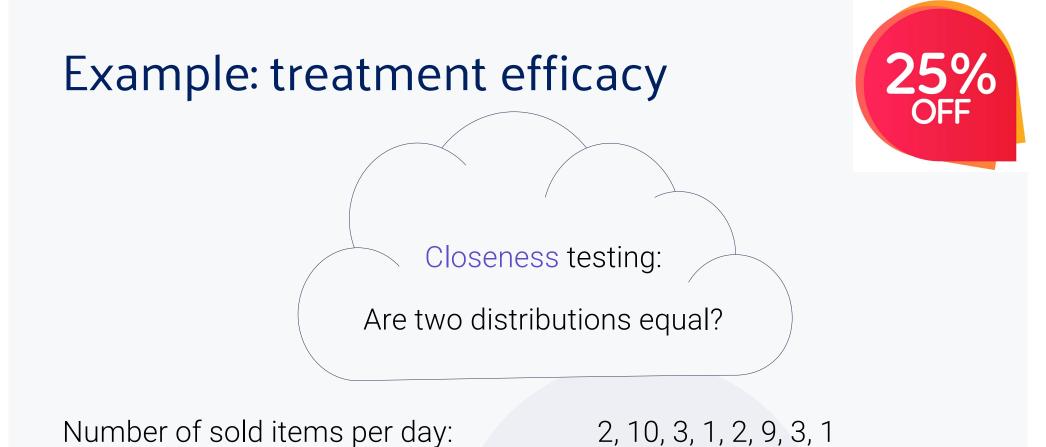
Our problem: Closeness testing: Are two distributions equal?



2, 10, 3, 1, 2, 9, 3, 1

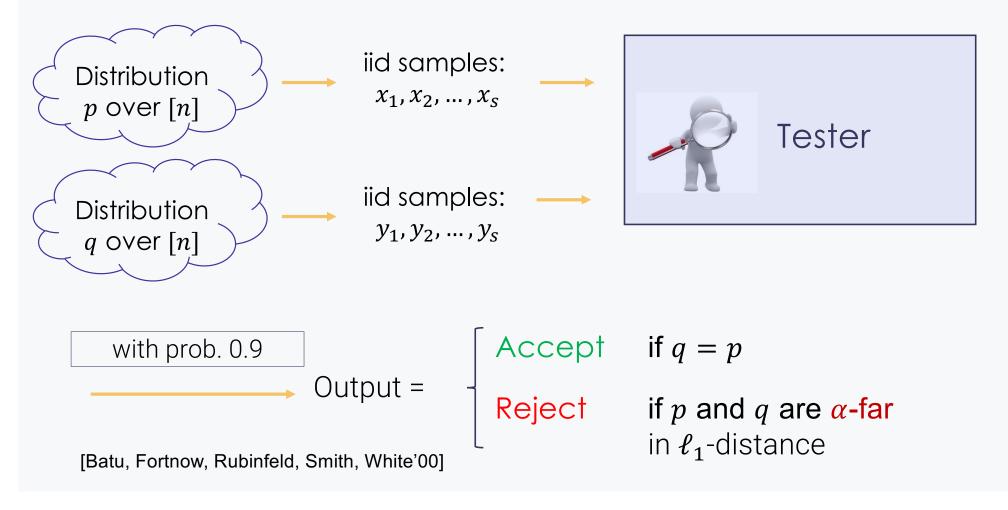
Pain level in the control group:

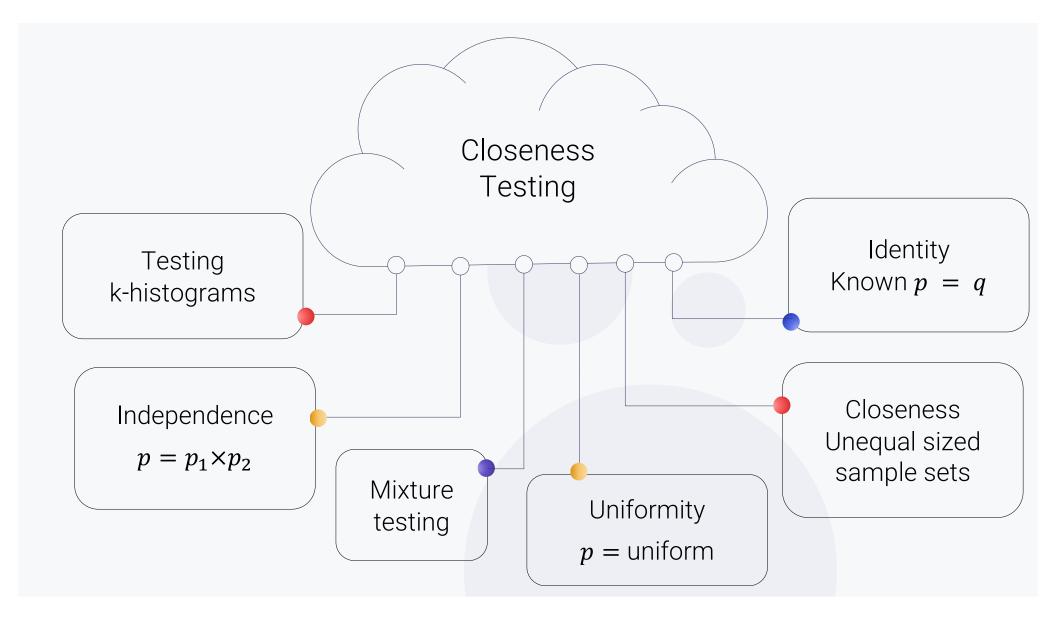
6, 2, 7, 2, 3, 6, 2, 3



Number of sold items after price drop: 6, 2, 7, 2, 3, 6, 2, 3

Our problem: closeness testing





Closeness testing implies independence testing

(X,Y) ~ p.Question: Are X and Y independent?

 p_1 and p_1 are the marginals

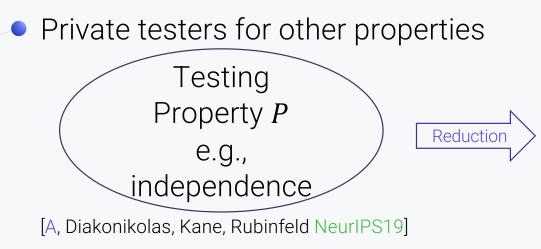
X and *Y* are independent $\qquad \qquad \Longleftrightarrow \qquad p = p_1 \times p_2$

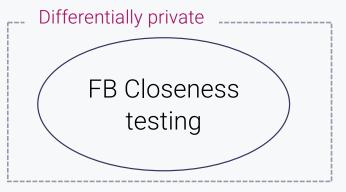
X and Y are far from being independent $\iff |p - p_1 \times p_2|_1 \ge \Theta(\alpha)$

[Batu, Fischer, Fortnow, Kumar, Rubinfeld, White'01]

Our results

- New flattening-based (FB) private tester for closeness testing
- Characterizing the non-private reductions that results in private testers automatically



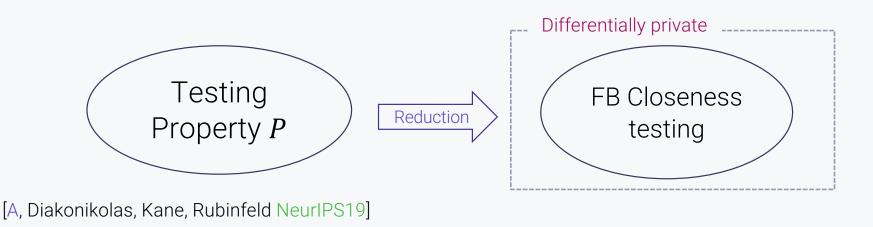


Non-private tester by [Diakonikolas, Kane'16]

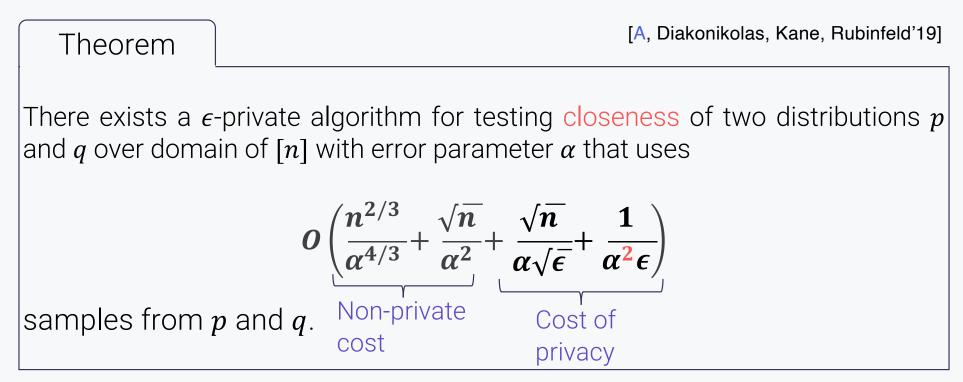
Our results

New flattening-based (FB) private tester Why this tester?

- Exploits the underlying structure of distributions
- Only known optimal results for some problems



Our result on closeness: privacy is almost free!



Our results on other properties

• New ϵ -DP tester for independence (domain = $[n] \times [m]$ when $m \le n$)

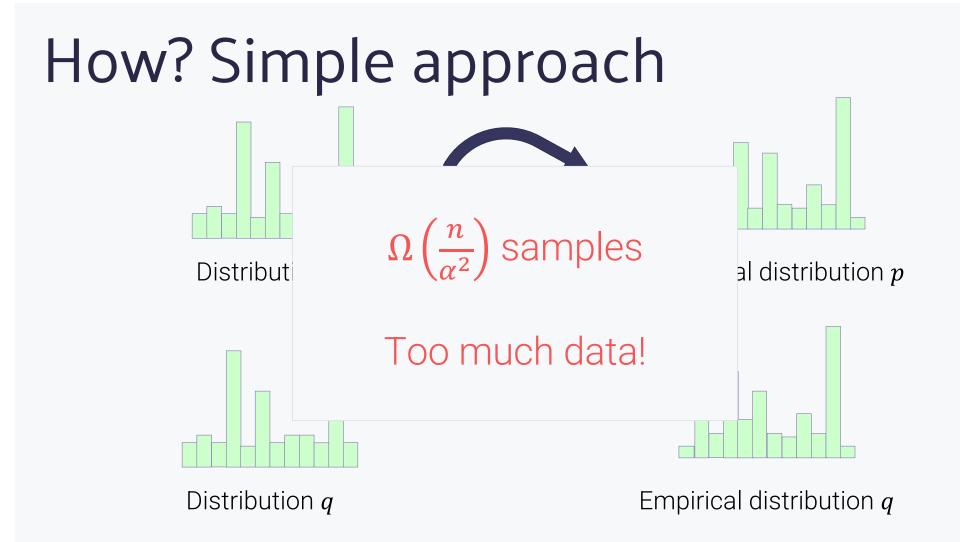
 $O(n^{2/3} m^{1/3}/\alpha^{4/3} + \sqrt{n m}/\alpha^2 + \sqrt{n m \log n}/(\alpha \epsilon) + 1/(\alpha^2 \epsilon))$

Non-private cost

Cost of privacy

- New ϵ -DP tester for testing closeness with unequal sized samples
- Tighter result for closeness/uniformity/identity

Techniques

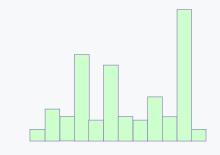


Sub-linear?

An alternative way:

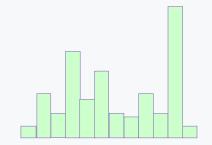
Statistic
$$Z \coloneqq \sum_{i=1}^{n} (X_i - Y_i)^2 - X_i - Y_i$$

Frequency of element *i* in the sample set = X_i



Empirical distribution p

$$p = q$$
 \longrightarrow Small Z
 $|p - q|_1 \ge \alpha \longrightarrow$ Large Z



Empirical distribution q

Frequency of element *i* in the sample set = Y_i

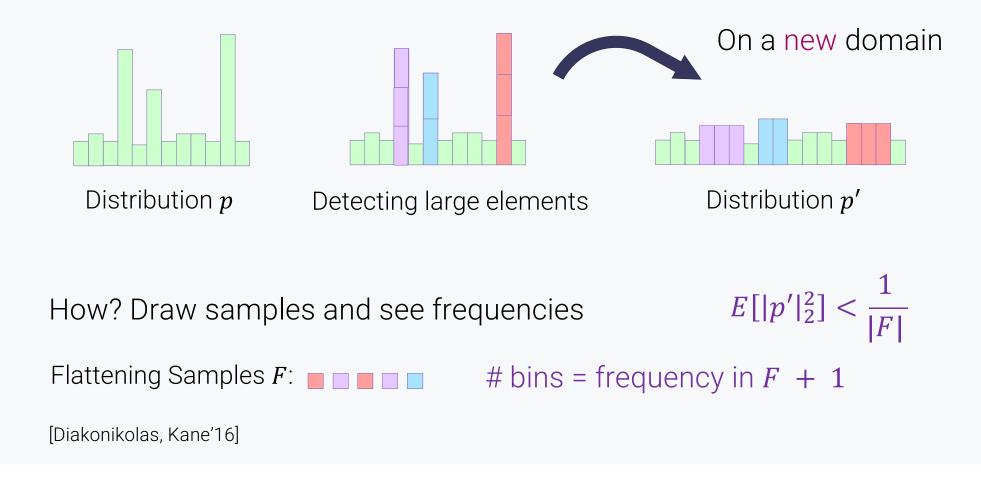
Sub-linear? Potential solution

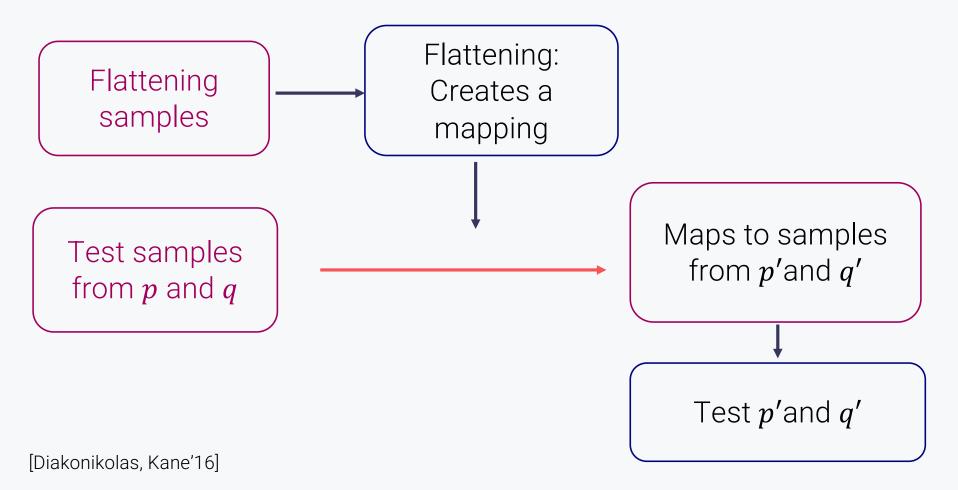
Statistic:
$$Z \coloneqq \sum_{i=1}^{n} (X_i - Y_i)^2 - X_i - Y_i$$

Sample complexity = $\Omega\left(\frac{n \cdot \max(|p|_2, |q|_2)}{\alpha^2}\right) \propto \max \ell_2$ -norm of p and q



How flattening reduces ℓ_2 -norm

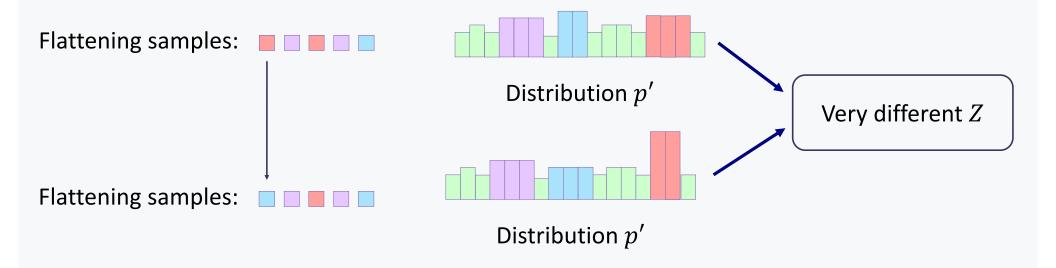


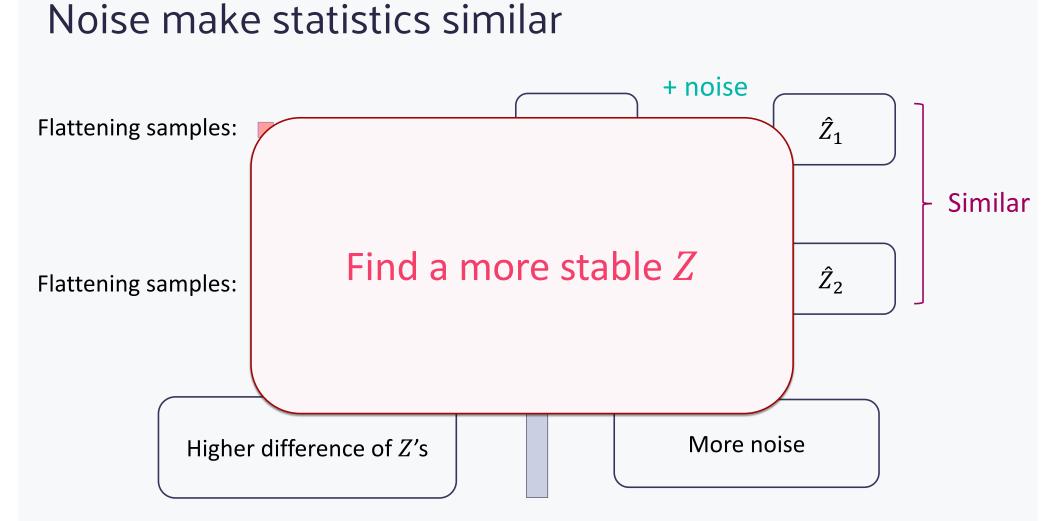


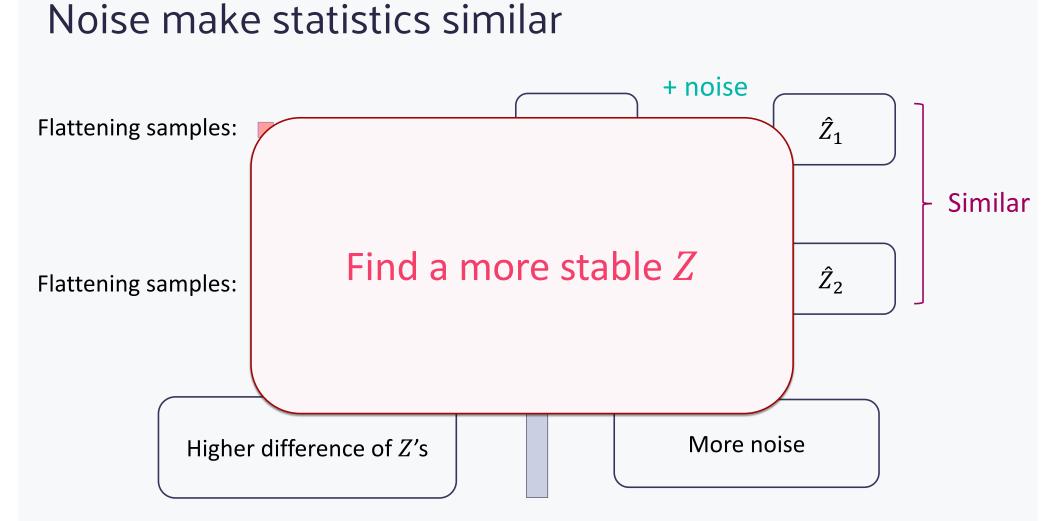
Not easy to privatize

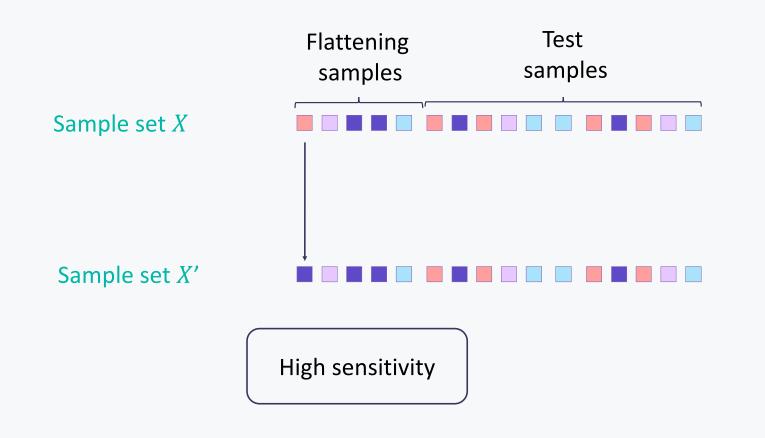
Flattening technique: strong, but sensitive...

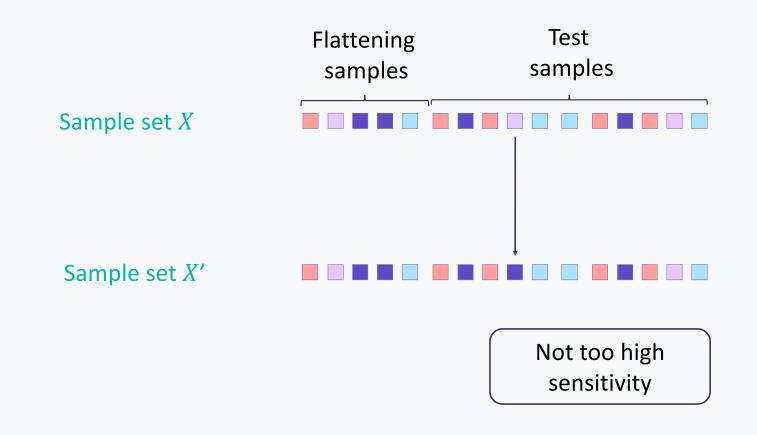
Hard to make it private!



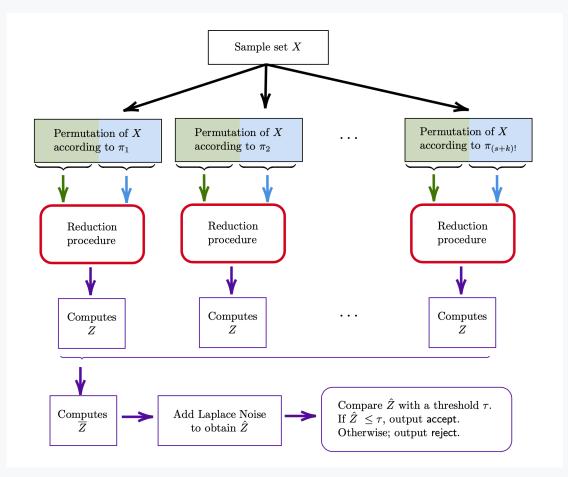






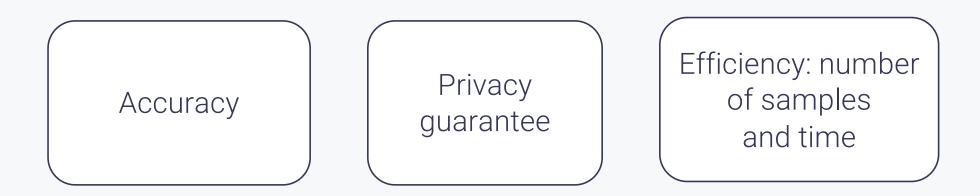


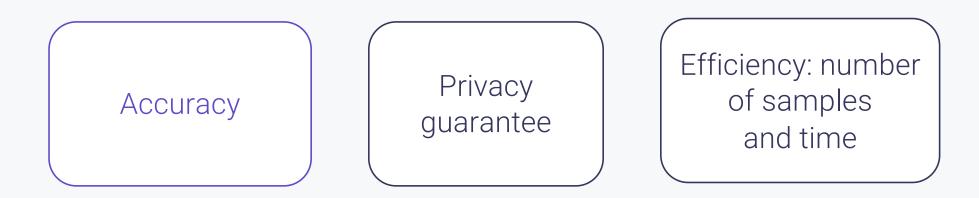
Our algorithm: derandomization



- Try all partitions for flattening and test samples
- Compute the mean of statistics

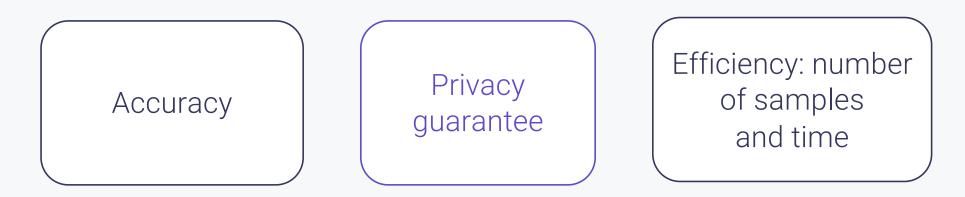
New statistic:
$$\overline{Z} \coloneqq E_{\pi}[Z]$$





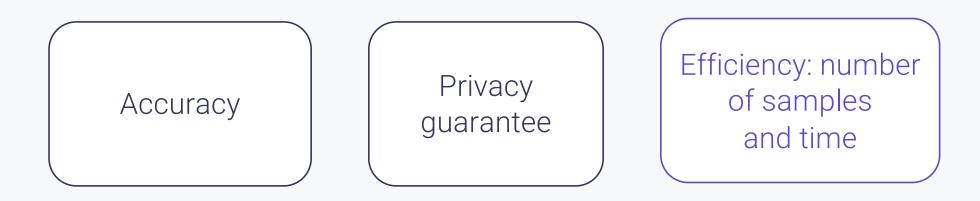
Not independent trials of the algorithms

Flattening guarantees only worked in average Requires a new analysis



Analyze how \overline{Z} changes after changing one sample

- Add noise to hide the change
- Does noise affect accuracy?



Exponential time

Alternative approach with linear time in sample size

Our result on closeness: privacy is almost free!

