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Introduction 

Instructor: Maryam Aliakbarpour

Email: maryama@rice.edu

Office hour: By appointment (email me)

Lectures: Wednesdays 4-5:15pm, Duncan Hall 1075

Website: https://maryamaliakbarpour.com/courses/F24/index.html+ Canvas 

P l e a s e  t u r n  o n  y o u r  
n o t i f i c a t i o n  o n  C a n v a s !

mailto:maryama@rice.edu
https://maryamaliakbarpour.com/courses/F24/index.html


Class objectives

Studying fundamental problems in learning theory from a new perspective:

• Computational aspects: limited time or memory

• Societal aspects: privacy and fairness

Practicing research soft skills: 

• How to approach a problem

• How to review / write a paper

• Presenting technical material 

W e  w i l l  r e t u r n  t o  t h i s !



Class Prerequisites 

• solid understanding of mathematical proofs

• basic algorithms, and probability

• A graduate level course in algorithms or machine learning is recommended.



Class format

• In each class, we focus on one topic / one paper.

• Before class: 
• Reading assignment: read the paper
• Provide a review on canvas

• Presentation: 
• A student presents a topic or a paper (1hr presentation)

• Questions / Discussion



Class format

• A list of suggested papers:        Syllabus

• You may also pick  papers that are not listed but are relevant to the topic of the 
class. 

• Sign up for your presentation here, and fill out this form by Thursday (9/12).

https://maryamaliakbarpour.com/courses/F24/Syllabus.pdf
https://docs.google.com/spreadsheets/d/1fC9rZhG8QmvKvbQncHeOHlmeGQ1LZ_16Hc_F5Oz3fiU/edit?usp=sharing
https://forms.gle/iZmk2kRpr8dWLZDZ7


Class format: presentation

A 1-hr long presentation:

• Introduction: What and why?

• Related work

• Problem definition

• Solution

• Technical part*



Class format: presentation

Practice your talk! (many times)

(Optional) Meet with me on Monday or Tuesday before your presentation.

• Set an appointment (maryama@rice.edu)



Class format: reading assignment

Read the paper before class, and be present.

Think of it as a mini-review.

Canvas assignment:

• Summary of the paper.

• Your opinion: Strengths / Limitations. Next steps?



Class format: class project

Only if you register for 3-credit

Two options:

• Survey of results 

• Research project 



Policies 

Read  Syllabus

• An inclusive environment

• Rice Honor Code

• Disability Resource Center

• Wellbeing and Mental Health

• Title IX Responsible Employee Notification

https://maryamaliakbarpour.com/courses/F24/Syllabus.pdf


Our topic



Our daily activities produce vast amounts of 
data.

Location 
historySocial 

media 
browsing

Financial 
transactions



Our daily activities produce vast amounts of 
data.

Location 
historySocial 

media 
browsing

Financial 
transactions

Category 1 Category 2 Category 3

How can we extract 
meaningful 
information?



 

Algorithm

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

Statistical inference

Information 
about 𝐷Data:

samples from 𝐷 
𝑥!, 𝑥", … , 𝑥# 



Estimation:
Estimate parameters of 
distribution
e.g. mean, variance

Testing:
Test distribution 𝐷 has a specific 
property 
e.g. uniformity, unimodal

Learning:
Learn distribution 𝐷 in a class
e.g. Gaussians

Classification: 
Learn a classifier from labeled data
e.g. learning half-spaces

What  do you 
want to know?

Statistical inference

Data:
samples from 𝐷 
𝑥!, 𝑥", … , 𝑥# 



Sample complexity
# data points

Accuracy 
Dependencies on the error 
parameter

Computational aspect: 
Memory / time

Societal aspect:
Privacy / Fairness

New goal: understanding the relationship 
between all of these aspects
Classic goal: data efficiency 
Use as few data points as possible



 

Algorithm with 

limited memory

limited time

private

fair

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

Statistical inference

Information 
about 𝐷Data:

samples from 𝐷 
𝑥!, 𝑥", … , 𝑥# 



This talk

Part I:  Inference with privacy

Part II: Inference with limited memory

 



Sensitive data requires privacy preserving 
algorithms.



Anonymization        not-identifiable

Privacy

Learn about community, but not individuals 

Example: Average net worth of patients in oncology    

≠

Global information leaks information about individuals!

re-identification of Massachusetts Governor’s medical data
within an insurance data set



Not ambiguous 
Irrefutable claims

Extensive use in practice: 
Apple, Google, US census 

Differential privacy

Mathematical formulation



 Processing via 
trusted server

Dataset

Output

Differential privacy (central)



Output should not depend on a single data point.

Differential privacy

Alice

Dataset

Output stays similar.

Dataset

Bob



Differential privacy

𝜖-differentially private algorithm 𝐴: 
u Any possible output 𝑌
u Two neighboring datasets 𝑋, 𝑋’ s.t. they differ in one sample
 

Pr 𝐴(𝑋) = 𝑌 ≤ 𝑒!	Pr 𝐴 𝑋" = 𝑌

[Dinur and Nissim’03, Dwork, McSherry, Nissim, and Smith‘06, Dwork’06]

𝜖
Privacy

0

∞



Laplace Mechanisms



Laplace distribution 

• PDF at point 𝑥: "
#$
exp − %	'(

)

• Expected value: 0

• Variance: 2𝑏#

• CDF: If 𝑌~𝐿𝑎𝑝(𝑏) then 

Pr 𝑌 ≥ 𝑡 = 𝑒'*/)



ℓ!-sensitivity
For two neighboring datasets 𝑋, 𝑋’ such that 𝑋	– 	𝑋’ = 	1, 
the sensitivity of 𝑓 is:

Δ𝑓 ≜ 	max
,,,!

|𝑓 𝑋 − 𝑓 𝑋. |



Laplace Mechanism 

Can make 𝑓 a 𝜖-differentially private function by adding Laplace noise to it.

Laplace noise

+	Lap(Δ𝑓/𝜖)
Function 𝑓(𝑋) Private value 2𝑓	(𝑋)



Usage

Works really well when the sensitivity is small (small noise):

• Count queries

• Histograms

• Low sensitivity statistics: #unseen



Provable guarantees

Theorem: Laplace mechanism is 𝜖-differentially private.

Theorem: Laplace mechanism is accurate. For all	𝛿 ∈ (0, 1]:

Pr 𝑓 𝑥 − I𝑓(𝑥) ≥
ln 1

𝛿 Δ𝑓

𝜖
≤ 𝛿



This talk

Part I:  Inference with privacy

Part II:  Inference with limited memory



Facilitates communication and 
processing of distributed data

Insightful: what summarizes the 
data

Why limited memory?
Size of working memory  <   size of 
data



Memory restriction can affect learning 
drastically!

 

• [Raz, FOCS. 2016] 
 Parity learning problem 

• [Chien, Ligett, McGregor. ITCS 2010]
 Robust statistics and distribution testing

• [Diakonikolas, Gouleakis, Kane, Rao. COLT 2019]
 Distribution testing

• [Sharam, Sidford, Valiant. STOC 2019] 
 Memory-Sample Tradeoffs for Linear Regression

• [Brown, Bun, Smith. COLT 2022]
 Memory lower bounds for sparse linear predictors

And many more…



Memory restriction can affect learning 
drastically!

 

[Raz’16]: Fast learning requires good memory! 

Parity learning problem:
- Goal: find 𝑤 ∈ 0,1 #

- Samples: a random 𝑥 ∈ 0,1 # and 𝑤 ⋅ 𝑥

By Gaussian elimination 

𝑂 𝑛$  bits of memory

𝑂 𝑛  samples

[Raz’16]: Any algorithm using

 ≤ #!

$%
 bits of memory

needs exponentially many samples



Example I:
Private Hypothesis Testing 

Joint work with Daniel Kane (UCSD), Ilias Diakonikolas (UW Madison), Ronitt 
Rubinfeld (MIT)



Does 𝐷 have a particular 
property or not?

Hypothesis testing

𝑥&, 𝑥$, … , 𝑥' 
Accept

or
Reject

Distribution 
𝐷 Algorithm

[Goldreich, Goldwasser, Ron’98], [Goldreich, Ron’00]
This formulation was first considered in [Batu, Fortnow, Rubinfeld, Smith, and White’00] 



Hypothesis Testing

Clinical trials: 

treatment efficacy

Applications E-commerce:

Efficacy of a new 

ad. strategy Social sciences: 

Correlation between 

gender and income
Technical property

 Mixture of Gaussians



Sensitive data requires privacy preserving 
algorithms.



Goal: 
Design testing algorithms:
- Accurate 
- Optimal number of data points
- Privacy preserving

Active area of research: [Rogers, Roth, Smith, Thakkar’16], [Gaboardi, Lim, Rogers, Vadhan’16], [Cai, 

Daskalakis, Kamath’17], [A, Diakonikolas, Rubinfeld’18], [Acharya, Sun, Zhang’18]: [Bun, Kamath, Steinke, 

Wu’19], [Canonne, Kamath, McMillan, Smith, Ullman’19], [Canonne, Kamath, McMillan, Ullman, 

Zakynthinou’20], [Vepakomma, Amiri, Canonne, Raskar, Pentland’22]



Our problem:

Closeness testing:

Are two distributions equal?



Example: treatment efficacy 

Pain level after treatment:   2, 10, 3, 1, 2, 9, 3, 1 

Pain level in the control group: 6, 2, 7, 2, 3, 6, 2, 3

Closeness testing:

Are two distributions equal?



Example: treatment efficacy 

Number of sold items per day:    2, 10, 3, 1, 2, 9, 3, 1 

Number of sold items after price drop: 6, 2, 7, 2, 3, 6, 2, 3

Closeness testing:

Are two distributions equal?



Distribution 
𝑝 over [𝑛]

iid samples: 
𝑥&, 𝑥$, … , 𝑥(

[Batu, Fortnow, Rubinfeld, Smith, White’00] 

Distribution 
𝑞 over [𝑛]

iid samples: 
𝑦&, 𝑦$, … , 𝑦(

     Tester

Accept if 𝑞 = 𝑝

Reject if 𝑝 and 𝑞 are 𝛼-far 
  in ℓ!-distance

with prob. 0.9
Output =

Our problem: closeness testing



Mixture 
testing

Identity
Known 𝑝	 = 	𝑞

Closeness
Unequal sized 
sample sets

Closeness
Testing

Independence
𝑝 = 𝑝&×𝑝$

Uniformity
𝑝 = uniform

Testing 
k-histograms



Closeness testing implies independence testing

𝑝 = 𝑞  𝑝% = 𝑞% 	|𝑝% − 𝑞%|" = 0⇒ ⇒

|𝑝 𝑞| ≥ 𝜖 |𝑝′ 𝑞′| ≥ 𝜖 	|𝑝% 𝑞%| ≥ &⇒ ⇒

𝑋, 𝑌  ~ 𝑝.

Question: Are 𝑋 and 𝑌 independent?

𝑋 and 𝑌 are far from being independent

𝑋 and 𝑌	are independent     

[Batu, Fischer, Fortnow, Kumar, Rubinfeld, White’01]

⟺ |𝑝 − 𝑝!×𝑝"|! ≥ Θ(𝛼)

⟺ 𝑝 = 𝑝!×𝑝" 

𝑝& and 𝑝& are the marginals



New flattening-based (FB) private tester for closeness testing

Characterizing the non-private reductions 
that results in private testers automatically 

Private testers for other properties

 

Our results

Testing 
Property 𝑃

e.g., 
independence

Reduction
FB Closeness 

testing

Differentially private

[A, Diakonikolas, Kane, Rubinfeld NeurIPS19] Non-private tester by [Diakonikolas, Kane’16]



New flattening-based (FB) private tester

Why this tester?
- Exploits the underlying structure of distributions

- Only known optimal results for some problems

 

Our results

Testing 
Property 𝑃 Reduction

FB Closeness 
testing

Differentially private

[A, Diakonikolas, Kane, Rubinfeld NeurIPS19] 



Our result on closeness: privacy is almost free!

There exists a 𝜖-private algorithm for testing closeness of two distributions 𝑝 
and 𝑞	over domain of [𝑛] with error parameter 𝛼 that uses

𝑶
𝒏𝟐/𝟑

𝜶𝟒/𝟑
+

𝒏
𝜶𝟐

+
𝒏

𝜶 𝝐
+

𝟏
𝜶𝟐𝝐

samples from 𝑝 and 𝑞.

Theorem [A, Diakonikolas, Kane, Rubinfeld’19]

Non-private 
cost

Cost of 
privacy 



Our results on other properties

* [Batu, Fischer, Fortnow, Kumar, Rubinfeld’01], [Paninski’08], [Diakonikolas, Kane’16], [Acharya, Sun, Zhang’18]

• New 𝜖-DP tester for independence (domain = 𝒏 ×[𝒎] when 𝑚 ≤ 𝑛)

O(𝒏𝟐/𝟑	𝒎𝟏/𝟑/𝜶𝟒/𝟑 + 𝒏	𝒎/𝜶𝟐+ 𝒏	𝒎	log	𝒏	/(𝜶𝝐)+ 𝟏/(𝜶𝟐𝝐))

• New 𝜖-DP tester for testing closeness with unequal sized samples

• Tighter result for closeness/uniformity/identity

Non-private cost Cost of privacy 



Techniques



Distribution 𝑝 Empirical distribution 𝑝

Distribution 𝑞 Empirical distribution 𝑞

Ω M
N!

 samples

Too much data!

How? Simple approach



Empirical distribution 𝑝

Empirical distribution 𝑞

Frequency of element 𝑖 in the sample set = 𝑋!

Frequency of element 𝑖 in the sample set = 𝑌!

An alternative way:

Statistic 𝑍 ≔ ∑,-!. 𝑋, − 𝑌, " 	− 𝑋, − 𝑌,

𝑝 = 𝑞                            Small 𝑍     

|𝑝 − 𝑞|! ≥ 𝛼	 Large 𝑍

Sub-linear?



𝑝 𝑝′

𝑞 𝑞′

low 
ℓ!-norm 

No change in ℓ!-
distance!

𝑝 = 𝑞  𝑝% = 𝑞% ⇒

|𝑝 − 𝑞|! ≥ 𝛼 |𝑝′ − 𝑞′|! ≥ 𝛼 ⇒

𝑝 = 𝑞  𝑝% = 𝑞% 	|𝑝% − 𝑞%|" = 0⇒ ⇒

|𝑝 𝑞| ≥ 𝜖 |𝑝′ 𝑞′| ≥ 𝜖 	|𝑝% 𝑞%| ≥ &⇒ ⇒

Statistic: 𝑍 ≔ ∑,-!. 𝑋, − 𝑌, " 	− 𝑋, − 𝑌,

Sample complexity = Ω .⋅012 |4|",|6|"
7"

 ∝ max ℓ"-norm of 𝑝 and 𝑞  

Sub-linear? Potential solution



How? Draw samples and see frequencies

Distribution 𝑝

Flattening Samples 𝐹:

Distribution 𝑝′

How flattening reduces ℓ"-norm

[Diakonikolas, Kane’16]

On a new domain

Detecting large elements

𝐸 𝑝′ "" <
1
|𝐹|

# bins = frequency in 𝐹	 + 	1



Testing closeness via flattening

Flattening: 
Creates a 
mapping

Flattening 
samples

Test 𝑝′and 𝑞′

Test samples 
from 𝑝 and 𝑞

Maps to samples 
from 𝑝′and 𝑞′

[Diakonikolas, Kane’16]



Flattening technique: strong, but sensitive…

Flattening samples:

Flattening samples:

Distribution 𝑝′

Distribution 𝑝′

Very different 𝑍

Hard to make it private!

Not easy to privatize 



Flattening samples:

Flattening samples:

𝑍& H𝑍&

𝑍$ H𝑍$

+ noise

+ noise

Noise make statistics similar

Similar

Higher difference of 𝑍’s More noise

Find a more stable 𝑍



Flattening samples:

Flattening samples:

𝑍& H𝑍&

𝑍$ H𝑍$

+ noise

+ noise

Noise make statistics similar

Similar

Higher difference of 𝑍’s More noise

Find a more stable 𝑍



Flattening 
samples

High sensitivity

Test 
samples

Sample set 𝑋

Sample set 𝑋’



Flattening 
samples

Test 
samples

Sample set 𝑋

Sample set 𝑋’

Not too high 
sensitivity



Our algorithm: derandomization 
• Try all partitions for flattening and test 

samples

• Compute the mean of statistics

New statistic: 𝑍 ≔ 𝐸"[𝑍]



Proof sketch: Why 𝑍	works

Accuracy Privacy 
guarantee

Efficiency: number 
of samples

and time



Proof sketch: Why 𝑍	works

Accuracy Privacy 
guarantee

Efficiency: number 
of samples

and time

Not independent trials of the algorithms

Flattening guarantees only worked in 
average Requires a new analysis 



Proof sketch: Why 𝑍	works

Accuracy Privacy 
guarantee

Efficiency: number 
of samples

and time

Analyze how 𝑍 changes after changing one 
sample

Add noise to hide the change

Does noise affect accuracy?



Proof sketch: Why 𝑍	works

Accuracy Privacy 
guarantee

Efficiency: number 
of samples

and time

Exponential time

Alternative approach with linear time in sample size



Our result on closeness: privacy is almost free!

There exists a 𝜖-private algorithm for testing closeness of two distributions 𝑝 
and 𝑞	over domain of [𝑛] with error parameter 𝛼 that uses

𝑶
𝒏𝟐/𝟑

𝜶𝟒/𝟑
+

𝒏
𝜶𝟐

+
𝒏

𝜶 𝝐
+

𝟏
𝜶𝟐𝝐

samples from 𝑝 and 𝑞.

Theorem [A, Diakonikolas, Kane, Rubinfeld’19]

Non-private 
cost

Cost of 
privacy 


