
Lecture 9 Oct 18
,
2023

Today's goals :

-VC Dimension



Last lecture :

Recall :

+ Uniform convergence .

(UC)

Class C has the uniform convergence

property if + 2, 5 = (0
, 1) ,

dist D

5 m (as a function of C , S
,
it

,
but not

D since we don't know D) ·

S
.

t - for

a training set of size i !

Pr [EC :fer, (c) - errc/z = - S

T- De I

-reconvergenizeimplies agnostic PACI learnability via EMR .
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suppose we have
a set of m points

m

There are 2 possible labelings
of these m points .

Suppose C is the class of 2" func
.

that assigns these labelings to these

points .



Assume this is the
true labeling .

fix a labeling of the points ↳

Now assume D is the uniform

distribution on the m points with

their label .

I Draw myz samples from D

(WLOL assume they are unique

How many
function in C label

I correctly ? 2
me

P = = (c C / ertc) . 0}
↳ promising hypothese . IP1 = 2

m/2

How many of them has error

<E ?



c is misleading if errcc)>I
and er

,
(c) = 0

McE(ferrc) > a 2 entic-ob

1M1 = 1 .

P1
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Hoeffding bounc = 2
·
0
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24 m = 40



=>> 0.
99 % of the promising concept

are bad !

-

Def
. Restriction of C to S

-

Let S be a set of m points in

domain X
.

S = Ga , , ..., km}

The restriction of C to S is the set

of functions from S to 90 , 19 that

can be derived from C .

Cs : ((ccn , ) , (a) . ... ((n))(E)}

where we represent each function from

151
S to 90 , 19 as a vector in 10 . 1)

m

or 10 , 11



-shattering
A Class C shatters a finite sat

S if the restriction of 2 to S

is the set of all functions from C

to 10, 13 .

That is KCs1
=

=2"

-

Example Cr axis-aligned rectangles
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How about 3 points ?

N

x2
.

an3

can you label them with

1 + , - , +)

C does not shatter this S
.

How about
8

4 points?

⑧ 3

8

-

what we have shown earlier indicates :

if C shatters S W2 cannot
3
I

learn with 1S = M samples .



Def . VC Dimension

the ve dimension of a concept class

C
,

denoted by VCdim(C)
,

is the

maximal size of a set that

can be shattered by C .

If C can shatter sets of arbitrary

large size
,

we say VCdim(C)
= 8

-

UC dim (Axis-aligned rectangle) = 4

We need to show :

-
there is a set of size 4 that

is shattered .

- No set of size 5 is shattered
.



finite classes :

ICs1 = /C) =

2 log(

C cannot shatter
any

set of

size larger than log (c)

Vedim(IC1) <log (C)



The fundamental theorem of PAC

learning

for class of concepts x -> 90 , 13

with 0-
1 loss function

,
the Following

are equivalent :

-
C has uniform convergence .

=d) ans ERM is a successful agnostic

PAC learner

-

I has a finite UC dim
.

~P
= <4 < => 1 => P

Roughly speaking :

what we have shown earlier today says

If ERM works with m sample

vc dim (C) < 2m



what have left to show is :

finite vedim > Uniform convergence.

while C might have infinitely many
11 11

hypotheses ,
its ectivesize is small

as the number of samples increases

the size of the restriction of C to

S <the sample sat) grows polynomially
not entially (2")

.

-en

def
. growth function

-

z

,

(m) = max ICs1
ScX : 1S1 = m

the number of functions that we can

have by restricting a to s of size m
.



vcdim (C) = d

f m = d -> 2
,
(m) - 2

-

Saver-Shelah-Perles Lemma

If VCdim(c) 3 dex ,

then

+ me (m) = (i)-

In particular ,
if m >d+1 ,

2(m) =(2)
-

thatThis is much better than

we naively can imply From the

definition
An

Ec (m) < 2




