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Goal :
PAC learnability
Uniform convergence

VC dir .



Recall :

-proximately Correct (PAC)

X instance space set of all instances

linput space/domain)

c
: x -> /+1

,
- 1) concept a function to lubel elements

C concept class a collection of labeling functions

Y target concept PEC and label all instances

correctly

D target distribution distribution over instances

sample/training dataset <n, cril>

<ac
,

car >I i

<an ,
((un)Y



Learning an axis-aligned rectangle R in IR

samples : points pic ..., Prs D over IR"

label y, . .
. . In

I + 1 if pi ER

Otherwise

=

=

- -I -
-

a

· a.

--

Goal : output R S
.

t
. error of R is

small (say El with high probability
(say 1 - 8)

solution : Draw m = s samples .

11

output a
consistent" rectangle .



what we did is called :

ERM : Empirical Risk Minimization

& A

I /
comes from samples error

* ERM could go very wrong if we

over fit : training set
-

↓

(a) = I y : x= x ; T

O a =
di GT

O empirical error E error 7 on any dist

with a continuous domain

ERM has really bad errors



*

ERM works⑲finiteclass ( if

we have enough samples .

- Problem Setup :

samples (n ,, y , . . ., (4m , Ym) - D

ceC : err(c) : = Pr [xal+3]
(n, ])s D

Realizable case

Assume I ceC st
.
errC

=
0

-

Goal

find = =C s
.

t
. with probability

1-8
,
err() 1 E .

-Proof

Bad hypothesis (B = = (ceClerr (c) > 23



training set

-

eir(c) := MeT/c(a)+33/
T

IT1

Misleading training samples

M == /
+

1 = c C st
. erf()ro)

upon observing ,
we may pict a that

is a bad choice
,
but it "looked"

good from ERM perspective ,
since

er, ) =
0 .

Our goal is to show observing a

dataset TEM happens only with

probability 6 .

This is sufficient to prove A .



fix c G C B
·

what is the probability of

a

·

errt (c) =

0

Prspr (eir+ (c) = 0]

=
Pr (fr ,yeT .

((R) =y]
m

TcD

m

iid
->

- Pr
samples I x ,y -

p(c(x) -y) I
earCass (1-2)" e

*



Now
,

we are ready to bound

Pr
+ -

~ (
+ zM]

=
Pr

m
[I c = C st .

err, -]
TSD

=E Pr (err< ) = 0]
ccCB T-D

=(CB1 . e
-

am

↳(C) .
e

-
em

set m = x/s)
=> Pr) outputting a misleading c]

<8
- is



-
menostic case :

what if there is no perfect ecC ?

+ < c) car (c) > 0

Goal

Find IG C s .

t .

errc) < min err(c) +
E

cCC

-
=OPT

the best possible option

Exercis 1
.

Suppose we have a finite class C
,

and mofel/s)) .
then r - p .

at least

22
1- S

,
for all c C

,
we have :

leirs (c) - errcal <4/2



+ Uniform convergence .

(UC)

Class C has the uniform convergence

property if + 2, 5 = (0, 1) ,
dist D

5 m (as a function of C , S ,
it

,
but not

D since we don't know D) ·

S
.

t - for

a training set of size i !

Pr [EC :fer, (c) - errc/z = - S

T- De I

-reconvergenizeimplies agnostic PACI learnability via EMR .

Uc = +caCB er
,
(c) <OPT+ 2/2
R

Uc
=> c

*
= the best option) err) <OPT+

~BadOPT opT+2 error

MIIIIIIIII.I
O

i
7

OPT + E

I



There are two types of error

in the agnostic setting :

errc) < min err(c) +
E

cCC I

- Eest' estimation
error

Ecpp approximation error
l

↓

depends only to the choice

of the class C

-

Is C rich enough to capture how

data is labeled?

⑧

larger E app Eest

more complex &

↑ ↓



No free lunch theorem says if

there is no universal learner :

for a complex C even when

E
app is 0

,
dest S constant

with some constant probability

[unless we have (INC samples)



VC dimension

-
infinite classes can still be

PAC- learnable ·

&

->> size is not determinant of
--

learnability .

So
,

what is then ?

-ofC characterizes

its learnability !


