Lecture 2

Concentration of random variables.

Questions: $\left\{\begin{array}{l}\text { Estimating average height of students } \\ \text { exit polls }\end{array}\right.$ n samples:

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \sim P \\
& \bar{x}_{n}:=\frac{\perp}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mu:=\mathbb{E}_{x \sim p}[x]
\end{aligned}
$$

Goal measure how much \bar{X}_{n} deviates from μ Law of Large numbers
(weak) $\forall \varepsilon \quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{x}_{n}-\mu\right|<v\right]=1$ (strong) $\quad \operatorname{Pr}\left[\lim _{n \rightarrow \infty} \overline{x_{n}}=\mu\right]=1$

Central Limit Theorem:
$Z \sim \mathcal{N}(0,1)$

$$
\begin{aligned}
\operatorname{Pr}\left[\frac{\sqrt{n}\left|\bar{x}_{n}-\mu\right|}{\sigma}>u\right] & \approx \operatorname{Pr}[|z|>u] \\
& =2 \phi(-u)
\end{aligned}
$$

where ϕ is the cdf of the standard normal dist.

Look up table

$$
u=1.96 \quad \rightarrow 2 \Phi(-u) \simeq 95 \%
$$

Hence: with prob. 0.95

$$
\mu \in\left[\bar{X}_{n}-1.96 \sigma / \sqrt{n},{\overline{X_{n}}}_{n}+1.96 \sigma / \sqrt{n}\right]
$$

[show plots]

- Quality of Approximation varies depending on P.

These are asymptotic results. Very general, but - work in the limit,

- Do not indicate the relationship among th parameters $n, d, \varepsilon, \delta$?
dimension error $\binom{$ in our }{ was $1-0.95=0.05}$

What about finite sample setting?

Usefull tools to show concentration (tail bounds)

Markov's inequality:

For non-negative random variable X, and $a>0$:

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[x]}{a}
$$

proof.

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} x \operatorname{Pr}[X=x] d x \\
& =\int_{0}^{a} x \operatorname{Pr}[X=x] d x+\int_{a}^{\infty} x \operatorname{Pr}[X=x] d x \\
& \geq 0 \quad+\int_{a}^{\infty} a \operatorname{Pr}[X=x] d x \\
& \geq a \operatorname{Pr}[X \geq a] \\
\Rightarrow & \operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}
\end{aligned}
$$

Chebysher's inequality
For a random variable with finite mean and variance, and $k>0$:

$$
\operatorname{Pr}[|x-\mathbb{E}[x]| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

proof.

$$
\begin{aligned}
& \operatorname{Pr}[|X-\mathbb{E}[x]| \geq k \sigma] \\
& =\operatorname{Pr}\left[(X-\mathbb{E}[x])^{2} \geq k^{2} \sigma^{2}\right] \\
& \leq \frac{\mathbb{E}\left[(X-\mathbb{E}[x])^{2}\right]}{k^{2} \sigma^{2}}=\frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}} B
\end{aligned}
$$

Chernoff bound:
general structure of the proof:

For all $\varepsilon>0, \quad t>0$:

$$
\begin{aligned}
& \operatorname{Pr}[x>\varepsilon]=\operatorname{Pr}\left[e^{t x}, e^{t \varepsilon}\right] \\
& \leq \frac{E\left[e^{t x}\right]}{e^{t \varepsilon}}=e^{-t \varepsilon} \mu_{x}(t)
\end{aligned}
$$

Markov moment generating force.
since the bound holds for any t, we can conclude:

$$
\operatorname{Pr}[x \geq \varepsilon] \leq \inf _{t>0} e^{-t \varepsilon} \mu_{x}(t)
$$

Example 1: standard normal

$$
\begin{aligned}
& Z \sim N(1,0) \\
& M_{Z}(t)=E\left[e^{t z}\right]=\exp \left(\frac{\sigma^{2} t^{2}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[z>\varepsilon] \leq e^{-t \varepsilon} \mu_{2}(t) \\
&=e^{-t \varepsilon} \exp \left(\frac{\sigma^{2} t^{2}}{2}\right) \\
&=\exp \left(\frac{\sigma^{2} t^{2}}{2}-t \varepsilon\right) \\
& t=\varepsilon / \sigma^{2} \\
&=\exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \operatorname{Pr}[|z-E[Z]|>\varepsilon] \\
\leq 2 \exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right)
\end{array}
$$

Sub-Gaussian

The moment generating function determins concern teration.

What if x behave like a normal?

Definition A mean-zero random var. is sub-Gaussian with variance proxy s^{2} if $M_{x}(t) \leq e^{s^{2} t^{2} / 2} \quad \forall t \in \mathbb{R}$
[Hueffding lemma]
$X \rightarrow$ zero mean random variable in $[a, b]$

$$
M_{x}(t):=\mathbb{E}\left[e^{t x}\right] \leq e^{t^{2}(b-a)^{2} / 8}
$$

\Rightarrow Hence X is sub-Gassian where

$$
s^{2}=\frac{(b-a)^{2}}{4}
$$

Suppose X_{1} and X_{2} are two independent sub-Gaussian random variables with variance proxies s_{1}^{2} and s_{2}^{2}. Then $X_{1}+X_{2} \rightarrow$ is sub-Gaussian with variance proxy $S_{1}^{2}+S_{2}^{2}$
n independent random variables:
X_{i} with mean μ_{i} in $\left[a+\mu_{i}, b+r_{i}\right]$

$$
\begin{array}{r}
\operatorname{Pr}\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq \varepsilon}{n}\right] \\
\leq e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}}
\end{array}
$$

chernoff bound for Bernoulli Variables:

Suppose we have a coin with bias μ. we flip this coin n times.
Let Y be the \# heads we observed. Then, we have:

$$
\begin{aligned}
& \operatorname{Pr}\left[\frac{Y}{n}-\mu>\varepsilon \mu\right] \leq e^{-n \mu \varepsilon^{2} / 3} \\
& \operatorname{Pr}\left[\mu-\frac{Y}{n}<\varepsilon \mu\right] \leq e^{-n \mu \varepsilon^{2} / 2}
\end{aligned}
$$

Hoeffding bound:

$$
\begin{aligned}
& \operatorname{Pr}\left[\frac{y}{n}-\mu>\varepsilon\right]<e^{-2 n \varepsilon^{2}} \\
& \operatorname{Pr}\left[\mu-\frac{y}{n}<\varepsilon\right]<e^{-2 n \varepsilon^{2}}
\end{aligned}
$$

