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Today’s lecture

House keeping items

Concentration of random variables

Estimation of Entropy in Constant Space

Feedback form



Class project

Projects types:
« Survey (4 papers)
 Research
Abstract: Due 9/13 (in two weeks)
 One page
* The topic of focus
Progress report: Due 10/18
* Mid-point evaluation
« 3-page report
Final project: Due 11/29
» 8-page final report

Project presentation



Next week

Paper:

When is Memorization of Irrelevant Training Data Necessary for High-Accuracy
Learning?

Reading assignment: Due 9/6 before 4pm.


https://arxiv.org/pdf/2012.06421.pdf
https://arxiv.org/pdf/2012.06421.pdf

Concentration of random
variables




Entropy estimation in constant
space

Joint work with Andrew McGregor (Umass Amherst), Jelani Nelson (UC
Berkeley), Erik Waingarten (Penn)



Estimation with memory constraints

Unknown distribution D

Goal Estimate f(D) with error e with probability 1 — § via samples
- (e.g., mean, variance, etc.)

Distribution

_—> X1, X2, ., Xy —>

D

Algorithm

. J

Image from: https://tilics.dmi.unibas.ch/the-turing-machine




Estimation with memory constraints

Unknown distribution D
Goal: Estimate f(D) with error e with probability 1 — § via samples
- (e.g., mean, variance, etc.)

How many samples do we need to achieve
certain amount of error with limited memory?

Distribution

> X1, X2 s Xy T

D Algorithm
Limited memory

. J

Image from: https://tilics.dmi.unibas.ch/the-turing-machine




This work: estimating entropy

Shannon'’s entropy of D = (pq, p3, ..., Pr):

n
1
H(D) = Dy log,—
- Px 1
x=1
Entropy -
Information theory : 50'5
In information theory, the entropy of a random variable
is the average level of "information”, "surprise", or
"uncertainty" inherent to the variable's possible 00

0.5
outcomes. Wikipedia PrX=1)

Feedback Entropy of a binary random variable



This work: estimating entropy

Shannon'’s entropy of D = (pq, p3, ..., Pr):

n
H(D) = ) py log,
x=1

Used in practice to measure
randomness

Applications:
» Dataset summarization
» Data compression

 Evaluating language models
 Clustering and classification

1
Px

(@



Problem definition

Shannon'’s entropy of D = (pq, p3, ..., Pr):

n

1

H(D) = ) Py logy—

- Px

x=1
Samples from D Algorithm g
xl,xz, "'lxm 0(1) WOI’dS Of
memory

Goal:
Pr[[H-HMD)|<e| =09

Memory constraint: 0(1) words of memory (Polylog(n, 1/¢€) bits)



n = domain size
€ = error

Our results

Theorem 1 [A, McGregor, Nelson, Waingarten’22]

There exists an algorithm for the entropy estimation problem that uses 0(1)
words (Polylog(n, 1/¢) bits) of memory and

M lpe(1/€)*
0 (L2el/e) ) samples.
€%
1 ) nlog(1/e
@( Sy °g~") samples with no O( AC0) ) samples
elogn (Ei) . €3
memory constraint with 0(1) words of memaory
[Batu, Dasgupta, Kumar, Rubinfeld. STOC 2002] [Paninski 2003] [Acharya, Bhadane, Indyk, Sun, NeurlPS
[Valiant 2008] [Valiant, Valiant. FOCS 2011] [Valiant, Valiant. 2019]
JACM 2017] [Wu, Yang. IEEE Trans. IT 2016] [Jiao et al. IEEE k /

K Trans. IT 2015] .... (and many more) /




A closely related model: streaming algorithms

e Algorithm
D over [n] HETEI

This talk: Properties of the distribution

Algorithm )
X1, X9y ey Xy ——> with limited — 7/
memory

Properties of the data stream itself



n = domain size
€ = error

Our results

Theorem | [A, McGregor, Nelson, Waingarten’22]

There exists an algorithm for the entropy estimation problem that uses 0(1)
words (Polylog(n, 1/€) bits) of memory and
0 (n log(1/€)*

€2

) samples.

/Note: Estimating the empirical entropy of the stream can NOT be\
done in 0(1) words of memory.

Q(E—z “((loglogn + log 1/6)) bits
\ /

~

[Chakrabarti, Cormode, McGregor'10]

\ [Jayaram Woodruff'19] /




Techniques




No memory constraint

Algorithm [Valiant, Valiant'11]:

1. Compute the fingerprint of the samples

MR O6/0000/00

Number of elements

o = N W b

Frequency = 1 Frequency = 2 Frequency = 3

Number of elements



No memory constraint

Algorithm [Valiant, Valiant'11]:
1. Compute the fingerprint of the samples

2. Come up with a histogram of a distribution that is likely to generate
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Plots from [Valiant, Valiant'11]



No memory constraint

Algorithm [Valiant, Valiant'11]:
1. Compute the fingerprint of the samples
2. Come up with a histogram of a distribution that is likely to generate

3. Output a distribution that is compatible with the histogram
Works well ignoring the labels! /

Entropy

Support size

Requires memorizing all the samples




Entropy estimation with
A6 memory constraint

A simple approach



n = domain size
€ = error

How? Take average

log— log— log—

Px, Px, Px,




Estimate probabilities

Fix m. Count i's in next m samples.

# instances

Setp, =

#instances of x ~ Bin (m, p,)

[elclelc)ele)

2
In the e><amp|e:—6




How? Take average

H(D) = Z P

@@O

1 | 1
A 08~
Px, Px,

log

n = domain size
€ = error

1
— =Exop [loggj

)

1

A

Px,

log

J

1

r

l

1

log—

1
px1

Iarger} H(D) x



n = domain size
€ = error

How? Take average

N

r
1 1 large r 1 large m 1
—Z log— > E,.p llog ] > Ex-p [108_] = H(D)
r L Px

px1 px1
s e T U —
Error of estimation Bias

n log (E)
E[#samples] = O(r - m) = 9( 3 - >



n = domain size
€ = error

Ana IYS'S Of errOr m = number of samples to estimate p;

2 r = number of rounds

Error: |H(D) — H| =

|[H(D) — H| < |H(D) — E|H;]| + |E|H;| - A

<

1 1 L

Ei-p [log ?] —Eip [loggl + |E|H;| — H]
l l

- )

Bias Error of estimation

m > Q(n/e) implies bias < €/2 7 = 0(log m/e?) implies that error < €/2

s (2)

€3

E[#samples| = O(r - m) = @(



n = domain size

i " : . € = error
Simple algorithm [Plug-in estimator]
n
H(D) = z p; -log 1/p; = Ei-pllog 1/pi]
i=1
1. Repeat r times .
1 Drawi~D. Fix m. Count i's in next m samples.
2. p; « Estimate p; — _ Py :
3. H < logl/f #instances of i ~ Bin (m, p;)
P U Set f, = # instances
2. Output: H:= -2 H; Di -

2
In the e><am|ole:—6

[elolelo)ele)




n = domain size
€ = error

S|m ple a|g0rlth m m = number of samples to estimate p;

r = number of rounds

n
H(D) := z p; - log 1/p; = E;.pllog 1/p;]
=1

l

Fix m. Count the number of

1. Repeatr times instances of i in the next m
1. Drawi~D. samples.
2. p; <« Estimate p; —_—

3. A < log1/p; #instances of i ~ Bin (m, p;)

. # instances

2. Output:ﬁ::% s Set p; =
In the example:—z

[elolelo)ele)




ldea |: Estimate via negative binomials

Count the number of samples until ¢
instances of x are observed.

#samples ~ Negative Bin (t, py)

# samples

Set X, =

In the example fort = 2 : X, =7

OO0 O@




n = domain size of the distribution

. € = error parameter
AnalySIS Of error r = number of rounds
9, t = number of observed instance of i

Error: |H(D) — A| < e

|[H(D) — H| < |H(D) — E|H;]| + |E|H;| - A

<

1 1 S

E;.p [log ?] —E;-p [loggl + |E|H;| — H]
l l

- )

Bias Error of
estimation

t=0(1/¢)impliesbias< e/2 r = 0(log? n/e?) implies that error < /7
E[#samples] = O(r - t - n) = O(nlog? n/e?)



ldea |l: Remove bias

|dea: Estimate bias and subtract it from H.

LetY; « piX;

Bias = |E;.pllog 1/p;] —E; pllog X;]| = |E;-pllog ¥;]l

E;-plY;] = 1. Taylor expansion around Y = 1:

Bias = E;pllog¥] = E|v;—1-

(Y;—1)?

ri-1°

2

_|_

3

n = domain size of the distribution

€ = error parameter

r = number of rounds

t = number of observed instance of i

X, = number of samples to see t
instance of i

E[X;] = 1/p;



ldea |l: Remove bias

|[dea: Truncated Taylor expansion. Keep the first s = log(1/¢) terms.

Bias < E \G — 1)5*1]

Reduce t to O(polylog(1/¢)). v '\

J

Polynomial of degree s of p;

Pr[k samples are equal] = p¥

concentrated



n = domain size of the distribution
€ = error parameter

. r = number of rounds
Idea | | | Remove log n fa Cto 'S t = number of observed instance of i
X, = number of samples to see t
instance of i

E[X;] =1/p;

|dea: Bucketing
Partition the range of X; into L intervals

E;.p [log X;] = X7 1Pr [X; € I,],; E[log X;|X; € I,

Estimate §, and H, qe

n
1 L Buckets -



n = domain size of the distribution
€ = error parameter
. r = number of rounds
Idea | | | Remove log n fa Cto 'S t = number of observed instance of i
X, = number of samples to see t
instance of i

E[X;] =1/p;
Error < |¥%21@@, — q,) - (H, — H)| + |X5-1 g0 - (H, — H,))|
s )
Bucke suracy.

Removing O(logn).

v

- J

—

n
€

L Buckets



