COMP 677:
 Estimation of Entropy in
 Constant Space

Lecture 2
Maryam Aliakbarpour
Fall 2023

Today's lecture

- House keeping items
- Concentration of random variables
- Estimation of Entropy in Constant Space
- Feedback form

Class project

- Projects types:
- Survey (4 papers)
- Research
- Abstract: Due 9/13 (in two weeks)
- One page
- The topic of focus
- Progress report: Due $10 / 18$
- Mid-point evaluation
- 3-page report
- Final project: Due 11/29
- 8-page final report
- Project presentation

Next week

Paper:

When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?

Reading assignment: Due 9/6 before 4pm.

Concentration of random variables

Entropy estimation in constant space

Joint work with Andrew McGregor (Umass Amherst), Jelani Nelson (UC Berkeley), Erik Waingarten (Penn)

Estimation with memory constraints

Unknown distribution D
Goal: Estimate $f(D)$ with error ϵ with probability $1-\delta$ via samples

- (e.g., mean, variance, etc.)

Estimation with memory constraints

Unknown distribution D
Goal: Estimate $f(D)$ with error ϵ with probability $1-\delta$ via samples

- (e.g., mean, variance, etc.)

How many samples do we need to achieve certain amount of error with limited memory?

This work: estimating entropy

Shannon's entropy of $D=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$:

$$
H(D):=\sum_{x=1}^{n} p_{x} \log _{2} \frac{1}{p_{x}}
$$

Entropy

Information theory :

In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Wikipedia

Entropy of a binary random variable

This work: estimating entropy

Shannon's entropy of $D=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$:

$$
H(D):=\sum_{x=1}^{n} p_{x} \log _{2} \frac{1}{p_{x}}
$$

Used in practice to measure randomness

Applications:

- Dataset summarization
- Data compression
- Evaluating language models
- Clustering and classification

Problem definition

Shannon's entropy of $D=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$:

$$
H(D):=\sum_{x=1}^{n} p_{x} \log _{2} \frac{1}{p_{x}}
$$

Goal:

$$
\operatorname{Pr}[|\widehat{H}-H(D)| \leq \epsilon] \geq 0.9
$$

Memory constraint: $O(1)$ words of memory (Polylog($n, 1 / \epsilon$) bits)

Our results

$n=$ domain size
$\epsilon=$ error

Theorem
There exists an algorithm for the entropy estimation problem that uses $O(1)$ words (Polylog ($n, 1 / \epsilon$) bits) of memory and

$$
0\left(\frac{\eta \log (1 / \epsilon)^{4}}{\left.\epsilon_{-}^{2}\right)}\right) \text { samples. }
$$

$\Theta\left(\frac{(\hat{n})}{\epsilon \log n}+\frac{\log ^{2} n}{\left(\epsilon_{\underline{2}}^{2}\right)}\right)$ samples with no memöry constraint
[Batu, Dasgupta, Kumar, Rubinfeld. STOC 2002] [Paninski 2003] [Valiant 2008] [Valiant, Valiant. FOCS 2011] [Valiant, Valiant. JACM 2017] [Wu, Yang. IEEE Trans. IT 2016] [Jiao et al. IEEE

Trans. IT 2015] (and many more)
$0\left(\frac{n \log (1 / \epsilon)^{3}}{\epsilon^{3}}\right)$ samples with $O(1)$ words of memory
[Acharya, Bhadane, Indyk, Sun, NeurIPS 2019]

A closely related model: streaming algorithms

Properties of the data stream itself

Our results

There exists an algorithm for the entropy estimation problem that uses O (1) words (Polylog ($n, 1 / \epsilon$) bits) of memory and
$0\left(\frac{n \log (1 / \epsilon)^{4}}{\epsilon^{2}}\right)$ samples.

Note: Estimating the empirical entropy of the stream can NOT be done in $O(1)$ words of memory.

$$
\begin{gathered}
\Omega\left(\frac{\Gamma}{\epsilon^{2}}!_{1}^{\prime}(\log \log n+\log 1 / \epsilon)\right) \text { bits } \\
\text { [Chakrabarti, Cormode, McGregor'10] } \\
\text { [Jayaram Woodruff'19] }
\end{gathered}
$$

Techniques

No memory constraint

Algorithm [Valiant, Valiant'11]:

1. Compute the fingerprint of the samples

List

Number of elements

No memory constraint

Algorithm [Valiant, Valiant'11]:

1. Compute the fingerprint of the samples
2. Come up with a histogram of a distribution that is likely to generate

Plots from [Valiant, Valiant'11]

No memory constraint

Algorithm [Valiant, Valiant'11]:

1. Compute the fingerprint of the samples
2. Come up with a histogram of a distribution that is likely to generate
3. Output a distribution that is compatible with the histogram

Works well ignoring the labels!
Entropy
Support size

Requires memorizing all the samples

Entropy estimation with no memory constraint

A simple approach

How? Take average

$$
\begin{aligned}
& H(D):=\sum_{x=1}^{n} p_{x} \cdot \log \frac{1}{p_{x}}=\mathrm{E}_{x \sim D}\left[\log \frac{1}{p_{x}}\right] \\
& p_{x_{i}}{ }^{\prime} \text { S are unknown } \Theta x_{r} \\
& \log \frac{1}{p_{x_{1}}} \log \frac{1}{p_{x_{2}}} \quad \ldots \quad \log \frac{1}{p_{x_{r}}}
\end{aligned}
$$

Estimate probabilities

Fix m. Count i 's in next m samples.

$$
\text { Set } \hat{p}_{x}=\frac{\# \text { instances }}{m}
$$

$$
\text { \#instances of } x \sim \operatorname{Bin}\left(m, p_{x}\right)
$$

In the example: $\frac{2}{6}$

How? Take average

$$
\begin{align*}
& H(D):=\sum_{x=1}^{n} p_{x} \cdot \log \frac{1}{p_{x}}=\mathrm{E}_{x \sim D}\left[\log \frac{1}{\hat{p}_{x}}\right] \\
& \log \frac{1}{\hat{p}_{\hat{x}_{1}}} \log \frac{1}{\hat{p}_{\hat{x}_{2}}} \\
& \frac{1}{r} \sum_{i=1}^{r} \log \frac{1}{\hat{p}_{\hat{x}_{1}}} \xrightarrow{\text { large } \mathrm{r}}
\end{align*}
$$

How? Take average

$$
\begin{aligned}
& \frac{1}{r} \sum_{i=1}^{r} \log \frac{1}{\frac{1}{\hat{p}_{x_{1}}}} \xrightarrow{\text { large } \mathrm{r}} \mathrm{E}_{x \sim D}\left[\log \frac{1}{\left.\frac{1}{\hat{p}_{x_{1}}}\right]} \xrightarrow{\text { large } \mathrm{m}} \mathrm{E}_{x \sim D}\left[\log \frac{1}{p_{x}}\right]=\mathrm{H}(\mathrm{D})\right. \\
& \text { Error of estimation Bias } \\
& E\left[\# \text { samples] }=\Theta(r \cdot m)=\Theta\left(\frac{n \log \left(\frac{n}{\epsilon}\right)}{\epsilon^{3}}\right)\right.
\end{aligned}
$$

Analysis of error

$$
\begin{aligned}
& n=\text { domain size } \\
& \epsilon=\text { error } \\
& m=\text { number of samples to estimate } p_{i} \\
& r=\text { number of rounds }
\end{aligned}
$$

Error: $|H(D)-\widehat{H}| \leq \epsilon$

$$
|H(D)-\widehat{H}| \leq\left|H(D)-\mathrm{E}\left[\widehat{H}_{i}\right]\right|+\left|\mathrm{E}\left[\widehat{H}_{i}\right]-\widehat{H}\right|
$$

$$
\leq \underbrace{\left|\mathrm{E}_{i \sim D}\left[\log \frac{1}{p_{i}}\right]-\mathrm{E}_{i \sim D}\left[\log \frac{1}{\hat{p}_{i}}\right]\right|}_{\text {Bias }}+\underbrace{\left|\mathrm{E}\left[\widehat{H}_{i}\right]-\widehat{H}\right|}_{\text {Error of estimation }}
$$

$m>\Omega(n / \epsilon)$ implies bias $<\epsilon / 2 r=\Theta\left(\log m / \epsilon^{2}\right)$ implies that error $<\epsilon / 2$

$$
E[\# \text { samples }]=\Theta(r \cdot m)=\Theta\left(\frac{n \log \left(\frac{n}{\epsilon}\right)}{\epsilon^{3}}\right)
$$

Simple algorithm [Plug-in estimator]

$$
H(D):=\sum_{i=1}^{n} p_{i} \cdot \log 1 / p_{i}=\mathrm{E}_{i \sim D}\left[\log 1 / p_{i}\right]
$$

1. Repeat r times
2. Draw $i \sim D$.

Fix m. Count i 's in next m samples.
2. $\hat{p}_{i} \leftarrow$ Estimate p_{i}
3. $\widehat{H}_{i} \leftarrow \log 1 / \hat{p}_{i}$

$$
\# \text { instances of } i \sim \operatorname{Bin}\left(m, p_{i}\right)
$$

Set $\hat{p}_{i}=\frac{\# \text { instances }}{m}$
In the example: $\frac{2}{6}$

Simple algorithm

$$
\begin{aligned}
& n=\text { domain size } \\
& \epsilon=\text { error } \\
& m=\text { number of samples to estimate } p_{i} \\
& r=\text { number of rounds }
\end{aligned}
$$

$$
H(D):=\sum_{i=1}^{n} p_{i} \cdot \log 1 / p_{i}=\mathrm{E}_{i \sim D}\left[\log 1 / p_{i}\right]
$$

1. Repeat r times
2. Draw $i \sim D$.
3. $\hat{p}_{i} \leftarrow$ Estimate p_{i}
4. $\widehat{H}_{i} \leftarrow \log 1 / \hat{p}_{i}$
5. Output: $\widehat{H}:=\frac{1}{\mathrm{r}} \sum_{i=1}^{r} \widehat{H}_{i}$

Fix m. Count the number of instances of i in the next m samples.

Idea I: Estimate via negative binomials

Count the number of samples until t instances of x are observed.

$$
\begin{gathered}
\text { \#samples } \sim \text { Negative } \operatorname{Bin}\left(t, p_{x}\right) \\
\text { Set } X_{x}=\frac{\# \text { samples }}{t} \\
\mathrm{E}\left[X_{x}\right]=1 / p_{x}
\end{gathered}
$$

In the example for $t=2: X_{x}=\frac{7}{2}$

Analysis of error
?
$n=$ domain size of the distribution
$\epsilon=$ error parameter
$r=$ number of rounds
$t=$ number of observed instance of i

Error: $|H(D)-\widehat{H}| \leq \epsilon$
$|H(D)-\widehat{H}| \leq\left|H(D)-\mathrm{E}\left[\widehat{H}_{i}\right]\right|+\left|\mathrm{E}\left[\widehat{H}_{i}\right]-\widehat{H}\right|$

$$
\leq \underbrace{\left\lvert\, \mathrm{E}_{i \sim D}\left[\log \frac{1}{p_{i}}\right]-\mathrm{E}_{i \sim D}\left[\log \frac{1}{\hat{p}_{i}}\right]\right.}_{\text {Bias }}+\underbrace{\left|\mathrm{E}\left[\hat{H}_{i}\right]-\widehat{H}\right|}_{\text {Error of }}
$$

$t=\Theta(1 / \epsilon)$ implies bias $<\epsilon / 2 \quad r=\Theta\left(\log ^{2} n / \epsilon^{2}\right)$ implies that error $<\epsilon / 2$

$$
E[\# \text { samples }]=\Theta(r \cdot t \cdot n)=\Theta\left(n \log ^{2} n / \epsilon^{3}\right)
$$

$n=$ domain size of the distribution
$\epsilon=$ error parameter
$r=$ number of rounds
$t=$ number of observed instance of i
$X_{i}=$ number of samples to see t instance of i
Idea: Estimate bias and subtract it from \widehat{H}.

Let $Y_{i} \leftarrow p_{i} X_{i}$
Bias $=\left|\mathrm{E}_{i \sim D}\left[\log 1 / p_{i}\right]-\mathrm{E}_{i \sim D}\left[\log X_{i}\right]\right|=\left|\mathrm{E}_{i \sim D}\left[\log Y_{i}\right]\right|$
$\mathrm{E}_{i \sim D}\left[Y_{i}\right]=1$. Taylor expansion around $\mathrm{Y}=1$:
Bias $=\mathrm{E}_{i \sim D}\left[\log Y_{i}\right]=\mathrm{E}\left[Y_{i}-1-\frac{\left(Y_{i}-1\right)^{2}}{2}+\frac{\left(Y_{i}-1\right)^{3}}{3}-\cdots\right]$

Idea II: Remove bias

Idea: Truncated Taylor expansion. Keep the first $s=\log (1 / \epsilon)$ terms.

$\operatorname{Pr}[\mathrm{k}$ samples are equal $]=p_{i}^{k}$

```
                                    n = domain size of the distribution
                                    \epsilon= error parameter
                                    r = number of rounds
                            t= number of observed instance of i
                            Xi}=\mathrm{ number of samples to see t
                        instance of }
\(\mathrm{E}\left[X_{i}\right]=1 / p_{i}\)
```

Idea: Bucketing
Partition the range of X_{i} into L intervals

$$
\mathrm{E}_{i \sim D}\left[\log X_{i}\right]=\sum_{\ell=1}^{L} \underbrace{\operatorname{Pr}\left[X_{i} \in I_{\ell}\right]} \underbrace{\mathrm{E}\left[\log X_{i} \mid X_{i} \in I_{\ell}\right]}_{1}
$$

Estimate \widehat{q}_{L} and \widehat{H}_{L}
$q_{\ell} \quad H_{\ell}$

$n=$ domain size of the distribution
 $\epsilon=$ error parameter
 Idea III: Remove $\log n$ factors
 $r=$ number of rounds
 $t=$ number of observed instance of i
 $X_{i}=$ number of samples to see t instance of i
 $\mathrm{E}\left[X_{i}\right]=1 / p_{i}$

Error $\leq\left|\sum_{\ell=1}^{L-1}\left(\hat{q}_{\ell}-q_{\ell}\right) \cdot\left(H_{\ell}-H_{L}\right)\right|+\left|\sum_{\ell=1}^{L} q_{\ell} \cdot\left(H_{\ell}-\widehat{H}_{\ell}\right)\right|$
Bucke Removing $O(\log n)$. zuracy.

$$
\text { Removing } O(\log n) \text {. }
$$

L Buckets

