COMP 677: Estimation of Entropy in

Constant Space

Lecture 2

Maryam Aliakbarpour

Fall 2023

Today's lecture

- House keeping items
- Concentration of random variables
- Estimation of Entropy in Constant Space
- Feedback form

Class project

- Projects types:
 - Survey (4 papers)
 - Research
- Abstract: Due 9/13 (in two weeks)
 - One page
 - The topic of focus
- Progress report: Due 10/18
 - Mid-point evaluation
 - 3-page report
- Final project: Due 11/29
 - 8-page final report
- Project presentation

Next week

Paper:

When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?

Reading assignment: Due 9/6 before 4pm.

Concentration of random variables

Entropy estimation in constant space

Joint work with Andrew McGregor (Umass Amherst), Jelani Nelson (UC Berkeley), Erik Waingarten (Penn)

Estimation with memory constraints

Unknown distribution D

Goal: Estimate f(D) with error ϵ with probability $1 - \delta$ via samples

- (e.g., mean, variance, etc.)

Estimation with memory constraints

Unknown distribution D

Goal: Estimate f(D) with error ϵ with probability $1 - \delta$ via samples

- (e.g., mean, variance, etc.)

How many samples do we need to achieve certain amount of error with limited memory?

This work: estimating entropy

Shannon's entropy of $D = (p_1, p_2, \dots, p_n)$:

Entropy

Feedback

Entropy of a binary random variable

This work: estimating entropy

Shannon's entropy of $D = (p_1, p_2, ..., p_n)$:

$$H(D) \coloneqq \sum_{x=1}^{n} p_x \log_2 \frac{1}{p_x}$$

Used in practice to measure randomness

Applications:

- Dataset summarization
- Data compression
- Evaluating language models
- Clustering and classification

|--|--|

Problem definition

Shannon's entropy of $D = (p_1, p_2, ..., p_n)$:

Goal:

$$\Pr[\left|\widehat{H} - H(D)\right| \le \epsilon] \ge 0.9$$

Memory constraint: O(1) words of memory $(Polylog(n, 1/\epsilon)$ bits)

n =domain size $\epsilon =$ error

Our results

[A, McGregor, Nelson, Waingarten'22] Theorem There exists an algorithm for the entropy estimation problem that uses O(1)words $(Polylog(n, 1/\epsilon)$ bits) of memory and $0\left(\frac{n\log(1/\epsilon)^4}{\epsilon^2}\right)$ samples. $\Theta\left(\frac{n}{\epsilon \log n} + \frac{\log^2 n}{\epsilon^2}\right)$ samples with no $0\left(\frac{n\log(1/\epsilon)^3}{\epsilon^3}\right)$ samples with O(1) words of memory memory constraint [Acharya, Bhadane, Indyk, Sun, NeurIPS] [Batu, Dasgupta, Kumar, Rubinfeld. STOC 2002] [Paninski 2003] [Valiant 2008] [Valiant, Valiant. FOCS 2011] [Valiant, Valiant. 2019] JACM 2017] [Wu, Yang. IEEE Trans. IT 2016] [Jiao et al. IEEE Trans. IT 2015] (and many more)

A closely related model: streaming algorithms

n = domain size $\epsilon =$ error

Our results

Theorem [A, McGregor, Nelson, Waingarten'22] There exists an algorithm for the entropy estimation problem that uses O(1) words $(Polylog(n, 1/\epsilon)$ bits) of memory and $O\left(\frac{n \log(1/\epsilon)^4}{\epsilon^2}\right)$ samples.

Note: Estimating the empirical entropy of the stream can NOT be done in O(1) words of memory.

$$\Omega\left(\frac{1}{\epsilon^2}, (\log \log n + \log 1/\epsilon)\right)$$
 bits

lakrabarti, Cormode, McGregor 10 [Jayaram Woodruff'19]

Techniques

No memory constraint

Algorithm [Valiant, Valiant'11]:

1. Compute the fingerprint of the samples

No memory constraint

Algorithm [Valiant, Valiant'11]:

- 1. Compute the fingerprint of the samples
- 2. Come up with a histogram of a distribution that is likely to generate

Plots from [Valiant, Valiant'11]

No memory constraint

Algorithm [Valiant, Valiant'11]:

- 1. Compute the fingerprint of the samples
- 2. Come up with a histogram of a distribution that is likely to generate
- 3. Output a distribution that is compatible with the histogram

Works well ignoring the labels! Entropy

Support size

Requires memorizing all the samples

Entropy estimation with no memory constraint

A simple approach

 $\epsilon = error$ How? Take average $H(D) \coloneqq \sum p_x \cdot \log \frac{1}{p_x} = \mathbb{E}_{x \sim D} \left[\log \frac{1}{p_x} \right]$ p_{x_i} 's are unknown Θ x_r x_1 $\log \frac{1}{p_{x_1}} \log \frac{1}{p_{x_2}}$ $\log \frac{1}{p_{x_r}}$... $\sum_{i=1}^{r} \log \frac{1}{p_{x_i}} \xrightarrow{\text{large } r} E_{x \sim D} \left[\log \frac{1}{p_x} \right]$ = H(D)

n =domain size

Estimate probabilities

Fix m. Count i's in next m samples.

Set $\hat{p}_x = \frac{\# \text{ instances}}{m}$

#instances of $x \sim Bin(m, p_x)$

In the example: $\frac{2}{6}$

n =domain size $\epsilon =$ error

How? Take average

n =domain size $\epsilon = error$ Analysis of error m = number of samples to estimate p_i r = number of rounds $\begin{array}{l}?\\ \text{Error:} \left| H(D) - \widehat{H} \right| \leq \epsilon \end{array}$ $|H(D) - \widehat{H}| \le |H(D) - \mathbb{E}[\widehat{H}_i]| + |\mathbb{E}[\widehat{H}_i] - \widehat{H}|$ $\leq \left| \mathbf{E}_{i \sim D} \left[\log \frac{1}{p_i} \right] - \mathbf{E}_{i \sim D} \left[\log \frac{1}{\hat{p}_i} \right] \right| + \left| \mathbf{E} \left[\hat{H}_i \right] - \hat{H} \right|$ Bias Error of estimation $m > \Omega(n/\epsilon)$ implies bias $< \epsilon/2$ $r = \Theta(\log m/\epsilon^2)$ implies that error $< \epsilon/2$ $E[\text{#samples}] = \Theta(r \cdot m) = \Theta\left(\frac{n\log\left(\frac{n}{\epsilon}\right)}{\epsilon^3}\right)$

n =domain size $\epsilon =$ error

Simple algorithm [Plug-in estimator]

$$H(D) \coloneqq \sum_{i=1}^{n} p_i \cdot \log 1/p_i = \mathrm{E}_{i \sim D}[\log 1/p_i]$$

- 1. Repeat r times
 - 1. Draw $i \sim D$.
 - 2. $\hat{p}_i \leftarrow \text{Estimate } p_i \dots$
 - 3. $\hat{H}_i \leftarrow \log 1/\hat{p}_i$
- 2. Output: $\widehat{H} := \frac{1}{r} \sum_{i=1}^{r} \widehat{H}_i$

Fix m. Count i's in next m samples.

#instances of
$$i \sim Bin(m, p_i)$$

Set $\hat{p}_i = \frac{\# instances}{m}$
In the example: $\frac{2}{6}$

Simple algorithm

$$H(D) \coloneqq \sum_{i=1}^{n} p_i \cdot \log 1/p_i = \mathbb{E}_{i \sim D}[\log 1/p_i]$$

- 1. Repeat *r* times
 - 1. Draw $i \sim D$.
 - 2. $\hat{p}_i \leftarrow \text{Estimate } p_i \dots$
 - 3. $\hat{H}_i \leftarrow \log 1/\hat{p}_i$
- 2. Output: $\widehat{H} := \frac{1}{r} \sum_{i=1}^{r} \widehat{H}_i$

Fix m. Count the number of instances of i in the next m samples.

n =domain size

r = number of rounds

m = number of samples to estimate p_i

 $\epsilon = error$

#instances of
$$i \sim Bin(m, p_i)$$

Set $\hat{p}_i = \frac{\# instances}{m}$
In the example: $\frac{2}{6}$

Idea l: Estimate via negative binomials

Count the number of samples until t instances of x are observed.

#samples ~ Negative Bin (t, p_x) Set $X_x = \frac{\text{# samples}}{t}$ $E[X_x] = 1/p_x$

In the example for
$$t = 2$$
: $X_x = \frac{7}{2}$

n = domain size of the distribution $\epsilon = \text{error parameter}$ Analysis of error r = number of rounds t = number of observed instance of *i* $\begin{array}{l} ?\\ \mathsf{Error:} \left| H(D) - \widehat{H} \right| \leq \epsilon \end{array}$ $|H(D) - \widehat{H}| \le |H(D) - \mathbb{E}[\widehat{H}_i]| + |\mathbb{E}[\widehat{H}_i] - \widehat{H}|$ $\leq \left| \mathbf{E}_{i \sim D} \left[\log \frac{1}{p_i} \right] - \mathbf{E}_{i \sim D} \left[\log \frac{1}{\hat{p}_i} \right] \right| + \left| \mathbf{E} \left[\hat{H}_i \right] - \hat{H} \right|$ Bias Error of estimation

 $t = \Theta(1/\epsilon) \text{ implies bias} < \epsilon/2 \quad r = \Theta(\log^2 n/\epsilon^2) \text{ implies that error} < \epsilon/2$ $E[\text{#samples}] = \Theta(r \cdot t \cdot n) = \Theta(n \log^2 n/\epsilon^3)$

Idea II: Remove bias

Idea: Estimate bias and subtract it from \widehat{H} .

Let $Y_i \leftarrow p_i X_i$ Bias = $|E_{i \sim D}[\log 1/p_i] - E_{i \sim D}[\log X_i]| = |E_{i \sim D}[\log Y_i]|$

 $E_{i\sim D}[Y_i] = 1$. Taylor expansion around Y = 1: Bias = $E_{i\sim D}[\log Y_i] = E\left[Y_i - 1 - \frac{(Y_i - 1)^2}{2} + \frac{(Y_i - 1)^3}{3} - \cdots\right]$

n = domain size of the distribution $\epsilon = \text{error parameter}$ r = number of rounds t = number of observed instance of i $X_i = \text{number of samples to see } t$ instance of i $E[X_i] = 1/p_i$

Idea II: Remove bias

Idea: Truncated Taylor expansion. Keep the first $s = \log(1/\epsilon)$ terms.

Idea III: Remove log n factors

Idea: Bucketing Partition the range of X_i into L intervals

Estimate \hat{q}_L and \hat{H}_L

n = domain size of the distribution $\epsilon = \text{error parameter}$ r = number of rounds t = number of observed instance of i $X_i = \text{number of samples to see } t$ instance of i $E[X_i] = 1/p_i$

H₽

 $\mathbb{E}_{i \sim D} \left[\log X_i \right] = \sum_{\ell=1}^{L} \Pr[X_i \in I_\ell] : \mathbb{E}[\log X_i | X_i \in I_\ell]$

 q_ℓ

Idea III: Remove log n factors

n = domain size of the distribution $\epsilon = \text{error parameter}$ r = number of rounds t = number of observed instance of i $X_i = \text{number of samples to see } t$ instance of i $E[X_i] = 1/p_i$

$$\operatorname{Error} \leq \left| \sum_{\ell=1}^{L-1} (\hat{q}_{\ell} - q_{\ell}) \cdot (H_{\ell} - H_{L}) \right| + \left| \sum_{\ell=1}^{L} q_{\ell} \cdot \left(H_{\ell} - \widehat{H}_{\ell} \right) \right|$$

