
Lecture 2
Maryam Aliakbarpour

Fall 2023

COMP 677:

Estimation of Entropy in

Constant Space

Today’s lecture

• House keeping items

• Concentration of random variables

• Estimation of Entropy in Constant Space

• Feedback form

Class project
• Projects types:
• Survey (4 papers)
• Research

• Abstract: Due 9/13 (in two weeks)
• One page
• The topic of focus

• Progress report: Due 10/18
• Mid-point evaluation
• 3-page report

• Final project: Due 11/29
• 8-page final report

• Project presentation

Next week

Paper:

When is Memorization of Irrelevant Training Data Necessary for High-Accuracy
Learning?

Reading assignment: Due 9/6 before 4pm.

https://arxiv.org/pdf/2012.06421.pdf
https://arxiv.org/pdf/2012.06421.pdf

Concentration of random
variables

Entropy estimation in constant
space

Joint work with Andrew McGregor (Umass Amherst), Jelani Nelson (UC
Berkeley), Erik Waingarten (Penn)

Estimation with memory constraints
Unknown distribution 𝐷
Goal: Estimate 𝑓(𝐷) with error 𝜖 with probability 1 − 𝛿 via samples

- (e.g., mean, variance, etc.)

𝑥!, 𝑥", … , 𝑥# $𝑓Distribution
𝐷 Algorithm

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

Unknown distribution 𝐷
Goal: Estimate 𝑓(𝐷) with error 𝜖 with probability 1 − 𝛿 via samples

- (e.g., mean, variance, etc.)

How many samples do we need to achieve
certain amount of error with limited memory?

Estimation with memory constraints

Algorithm
Limited memory

𝑥!, 𝑥", … , 𝑥# $𝑓Distribution
𝐷

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

This work: estimating entropy
Shannon’s entropy of 𝐷 = 𝑝!, 𝑝", … , 𝑝& :

𝐻 𝐷 ≔)
'(!

&

𝑝' log"
1
𝑝'

Entropy of a binary random variable

This work: estimating entropy
Shannon’s entropy of 𝐷 = 𝑝!, 𝑝", … , 𝑝& :

𝐻 𝐷 ≔)
'(!

&

𝑝' log"
1
𝑝'

Used in practice to measure
randomness

Applications:
• Dataset summarization
• Data compression
• Evaluating language models
• Clustering and classification

Problem definition
Shannon’s entropy of 𝐷 = 𝑝!, 𝑝", … , 𝑝& :

𝐻 𝐷 ≔)
'(!

&

𝑝' log"
1
𝑝'

Goal:
Pr 0𝐻 − 𝐻 𝐷 ≤ 𝜖 ≥ 0.9

Memory constraint: 𝑂 1 words of memory (𝑃𝑜𝑙𝑦𝑙𝑜𝑔(𝑛, 1/𝜖) bits)

Algorithm
O(1) words of

memory

Samples from 𝐷
𝑥! , 𝑥" , … , 𝑥#

-𝐻

Our results

There exists an algorithm for the entropy estimation problem that uses 𝑂(1)
words (𝑃𝑜𝑙𝑦𝑙𝑜𝑔(𝑛, 1/𝜖) bits) of memory and

O ! "#$ %/' !

'"
samples.

Theorem

𝑛 = domain size
𝜖 = error

Θ &
2 345 &

+ 345!&
2!

samples with no
memory constraint

[Batu, Dasgupta, Kumar, Rubinfeld. STOC 2002] [Paninski 2003]
[Valiant 2008] [Valiant, Valiant. FOCS 2011] [Valiant, Valiant.
JACM 2017] [Wu, Yang. IEEE Trans. IT 2016] [Jiao et al. IEEE

Trans. IT 2015] …. (and many more)

O & 345 !/2 "

2"
samples

with 𝑂(1) words of memory

[Acharya, Bhadane, Indyk, Sun, NeurIPS
2019]

[A, McGregor, Nelson, Waingarten’22]

A closely related model: streaming algorithms

Algorithm
with limited

memory
𝑥!, 𝑥", … , 𝑥# $𝑓Distribution

𝐷 over 𝑛

Algorithm
with limited

memory
𝑥!, 𝑥", … , 𝑥# $𝑓

This talk: Properties of the distribution

Properties of the data stream itself

Our results

There exists an algorithm for the entropy estimation problem that uses 𝑂(1)
words (𝑃𝑜𝑙𝑦𝑙𝑜𝑔(𝑛, 1/𝜖) bits) of memory and

O ! "#$ %/' !

'"
samples.

Theorem

Note: Estimating the empirical entropy of the stream can NOT be
done in 𝑂(1) words of memory.

Ω !
"!
⋅ (log log 𝑛 + log 1/𝜖) bits

[Chakrabarti, Cormode, McGregor’10]
[Jayaram Woodruff’19]

𝑛 = domain size
𝜖 = error

[A, McGregor, Nelson, Waingarten’22]

Techniques

No memory constraint
Algorithm [Valiant, Valiant’11]:

1. Compute the fingerprint of the samples

3 3 81 137 5List

0

1

2

3

4

Frequency = 1 Frequency = 2 Frequency = 3

Number of elements

Number of elements

No memory constraint
Algorithm [Valiant, Valiant’11]:

1. Compute the fingerprint of the samples

2. Come up with a histogram of a distribution that is likely to generate

Plots from [Valiant, Valiant’11]

No memory constraint
Algorithm [Valiant, Valiant’11]:

1. Compute the fingerprint of the samples

2. Come up with a histogram of a distribution that is likely to generate

3. Output a distribution that is compatible with the histogram

Works well ignoring the labels!

Entropy

Support size

Requires memorizing all the samples

Entropy estimation with
no memory constraint

A simple approach

How? Take average
𝐻 𝐷 ≔ 4

'(!

&

𝑝' ⋅ log
1
𝑝'
= E'~8 log

1
𝑝'

𝑛 = domain size
𝜖 = error

log
1
𝑝#"

log
1
𝑝#!

log
1
𝑝##

1
𝑟
0
$%!

&

log
1
𝑝#$

E#~(log
1
𝑝#

= H(D)

…

𝑥) 𝑥&𝑥! …

large r

𝑝!< ’s are unknown 😔

Fix 𝑚. Count 𝑖’s in next 𝑚 samples.

Set �̂�' =
:;<=>;?@<

#

In the example: "
A

Estimate probabilities

𝑥 𝑥

#instances of 𝑥 ∼ Bin (𝑚, 𝑝#)

How? Take average
𝐻 𝐷 ≔ 4

'(!

&

𝑝' ⋅ log
1
𝑝'
= E'~8 log

1
𝑝'

𝑛 = domain size
𝜖 = error

log
1
�̂�#"

log
1
�̂�#!

log
1
�̂�##

1
𝑟
0
$%!

&

log
1
�̂�#"

…

𝑥) 𝑥&𝑥! …

large r H(D)

How? Take average
𝑛 = domain size
𝜖 = error

1
𝑟
0
$%!

&

log
1
�̂�#"

E#~(log
1
𝑝#

= H(D)
large r

E#∼(log
1
�̂�#"

large m

BiasError of estimation

𝐸 #samples = Θ(𝑟 ⋅ 𝑚) = Θ
𝑛 log 𝑛

𝜖
𝜖4

Error: 𝐻 𝐷 − D𝐻

𝐻 𝐷 − D𝐻 ≤ 𝐻 𝐷 − E D𝐻$ + E D𝐻$ − D𝐻

≤ E$~(log
1
𝑝$

− E$∼(log
1
�̂�$

+ E D𝐻$ − D𝐻

𝐸 #samples = Θ(𝑟 ⋅ 𝑚) = Θ
𝑛 log 𝑛

𝜖
𝜖4

Analysis of error

Bias Error of estimation

𝑚 > Ω(𝑛/𝜖) implies bias < 𝜖/2 𝑟 = Θ log 𝑚/𝜖) implies that error < 𝜖/2

?
≤ 𝜖

𝑛 = domain size
𝜖 = error
𝑚 = number of samples to estimate 𝑝$
𝑟 = number of rounds

Simple algorithm [Plug-in estimator]

𝐻 𝐷 ≔4
E(!

&

𝑝E ⋅ log 1/𝑝E = EE~8 log 1/𝑝E

1. Repeat 𝑟 times
1. Draw 𝑖 ∼ 𝐷.
2. �̂�$ ← Estimate 𝑝$
3. 9𝐻$ ← log 1/�̂�$

2. Output: B𝐻:= !
F
∑E(!G B𝐻E

i i

Fix 𝑚. Count 𝑖’s in next 𝑚 samples.

Set �̂�E =
:;<=>;?@<

#
In the example: "

A

#instances of 𝑖 ∼ Bin (𝑚, 𝑝$)

𝑛 = domain size
𝜖 = error

Simple algorithm

𝐻 𝐷 ≔4
E(!

&

𝑝E ⋅ log 1/𝑝E = EE~8 log 1/𝑝E

1. Repeat 𝑟 times
1. Draw 𝑖 ∼ 𝐷.
2. �̂�$ ← Estimate 𝑝$
3. 9𝐻$ ← log 1/�̂�$

2. Output: B𝐻:= !
F
∑E(!G B𝐻E

i i

Fix 𝑚 . Count the number of
instances of 𝑖 in the next 𝑚
samples.

Set �̂�E =
:;<=>;?@<

#
In the example: "

A

#instances of 𝑖 ∼ Bin (𝑚, 𝑝$)

𝑛 = domain size
𝜖 = error
𝑚 = number of samples to estimate 𝑝$
𝑟 = number of rounds

Idea I: Estimate via negative binomials

Count the number of samples until 𝑡
instances of 𝑥 are observed.

Set 𝑋' =
<>HI3@<

J

E 𝑋' = 1/𝑝'

In the example for 𝑡 = 2 : X' =
K
"

𝑥 𝑥

#samples ∼ Negative Bin (𝑡, 𝑝#)

Error: 𝐻 𝐷 − D𝐻

𝐻 𝐷 − D𝐻 ≤ 𝐻 𝐷 − E D𝐻$ + E D𝐻$ − D𝐻

≤ E$~(log
1
𝑝$

− E$∼(log
1
�̂�$

+ E D𝐻$ − D𝐻

𝐸 #samples = Θ(𝑟 ⋅ 𝑡 ⋅ 𝑛) = Θ 𝑛 log) 𝑛/𝜖4

Analysis of error

Bias Error of
estimation

𝑡 = 𝛩(1/𝜖) implies bias < 𝜖/2 𝑟 = Θ log) 𝑛/𝜖) implies that error < 𝜖/2

?
≤ 𝜖

𝑛 = domain size of the distribution
𝜖 = error parameter
𝑟 = number of rounds
𝑡 = number of observed instance of 𝑖

𝑛 = domain size of the distribution
𝜖 = error parameter
𝑟 = number of rounds
𝑡 = number of observed instance of 𝑖
𝑋$ = number of samples to see 𝑡

instance of 𝑖
E[𝑋$] = 1/𝑝$

Idea II: Remove bias

Idea: Estimate bias and subtract it from B𝐻.

Let 𝑌E ← 𝑝E𝑋E
Bias = EE~8 log 1/𝑝E − EE∼8 log 𝑋E = |EE∼8 log 𝑌E |

EE∼8 𝑌E = 1. Taylor expansion around Y = 1:

Bias = EE∼8 log 𝑌E = E 𝑌E − 1 −
T#U! !

"
+ T#U! "

V
−⋯

Idea II: Remove bias
Idea: Truncated Taylor expansion. Keep the first 𝑠 = log 1/𝜖 terms.

Bias < E 𝑌$ − 1 −
F$G! !

)
+ F$G! %

4
+⋯+ G! & F$G! &

H
+ E 𝑂 𝑌$ − 1 HI!

Nicely concentrated
Polynomial of degree 𝑠 of 𝑝E

Pr k samples are equal = 𝑝EW

Reduce 𝑡 to 𝑂(polylog(1/𝜖)).

Idea III: Remove log 𝑛 factors

Idea: Bucketing
Partition the range of 𝑋) into 𝐿 intervals

E)∼+ log 𝑋) = ∑ℓ-.
/ Pr[𝑋) ∈ 𝐼ℓ] ⋅ E[log X)|𝑋) ∈ 𝐼ℓ]

Estimate <𝑞/ and >𝐻/ 𝐻ℓ𝑞ℓ

1 𝑛
𝜖

𝐿 Buckets

𝑛 = domain size of the distribution
𝜖 = error parameter
𝑟 = number of rounds
𝑡 = number of observed instance of 𝑖
𝑋$ = number of samples to see 𝑡

instance of 𝑖
E[𝑋$] = 1/𝑝$

Idea III: Remove log 𝑛 factors

Error ≤ ∑ℓ-./0. <𝑞ℓ − 𝑞ℓ ⋅ 𝐻ℓ − 𝐻/ + ∑ℓ-./ 𝑞ℓ ⋅ 𝐻ℓ − >𝐻ℓ

Buckets of large 𝑋) can be computed with less accuracy.

1 𝑛
𝜖

𝐿 Buckets

Removing 𝑂(log 𝑛).

𝑛 = domain size of the distribution
𝜖 = error parameter
𝑟 = number of rounds
𝑡 = number of observed instance of 𝑖
𝑋$ = number of samples to see 𝑡

instance of 𝑖
E[𝑋$] = 1/𝑝$

