Lecture 10

- Growth function
- Saner - Shelah - Merles Lemma
- finite VC dim \Rightarrow Uniform Convergena

Recall:

+ Uniform convergence. (UC)
Class C has the uniform convergence property if $\forall \varepsilon, \delta \in(0,1)$, dist 0 3 m (as a function of ε, δ, , t, but not D since we don't know D). st. for a training set of size m :

$$
\operatorname{Pr}_{T \sim D^{m}}\left[\forall c \in C:\left|\operatorname{err}_{T}(c)-\operatorname{err}(c)\right| \leq \varepsilon\right] \geq 1-\delta
$$

+ VC Dimen sion
The $V C$ dimension of a concept class C, denoted by $V C \operatorname{dim}(C)$, is the maximal size of a set s that can be shattered by C.
+Restriction of C to S
Let S be a set of m points in domain $X . S=\left\{x_{1}, \ldots, x_{m}\right\}$

The restriction of C to S is the set of functions from S to $\{0,1\}$ that can be derived from C.

$$
C_{s}:\left\{\left(c\left(x_{1}\right), c\left(x_{2}\right), \ldots, c\left(x_{m}\right)\right) \mid c \in C\right\}
$$

where we represent each function from S to $\{0,1\}$ as a vector in $\{0.1\}^{|5|}$ or $\{0,1\}^{m}$

Overview of today's lecture:

(2)VC V samples \rightarrow ERM does nit work

$$
E R M \text { work } \Rightarrow V C<m
$$

with m samples
growth function

Set S of size $m=4$

$$
V C \operatorname{dim}(C)=1
$$

C cannot shatter any two points
if $|s|=m$

$$
\begin{aligned}
& \Rightarrow\left|C_{s}\right|=2^{m} \\
& \max \quad\left|C_{s}\right| \leq \tau_{S}(m) \\
& S_{1 \leq x} \leq x \mid=m
\end{aligned}
$$

(1) Saver's Lemma:

$$
\begin{array}{r}
\text { If } \quad V C \operatorname{dim}(C) \leq d: \\
\quad Z_{C}(m) \leq m
\end{array}
$$

$$
\begin{aligned}
& \text { (2) } \mid S 1=m \\
& c \in C:|\operatorname{err}(c)-\operatorname{err}(c)| \approx \sqrt{\frac{\log \left(2_{c}(2 m)\right)}{2 m}} \\
& m \approx \frac{d}{\varepsilon^{2}} \Longrightarrow \text { unifurm convergence }
\end{aligned}
$$

+ Growth function
Let C be a concept class. Then, the growth function of C, denoted $\tau_{C}: N \rightarrow N$, is defined as:

$$
\tau_{C}(m)=\max _{s \subset X:|s|=m}\left|C_{s}\right|
$$

$\tau_{C}(m) \approx$ number of functions from $|s|$ to $\{0,1\}$ that can be obtained by $c \in C$.

- With no assumption, we know $\left|C_{s}\right|$ is bounded by $2^{|s|}=2^{m}$

Saver's Lemma

Let C be a concept class with $V C \operatorname{dim}(C) \leq d<\infty$. Then for all $m \in \mathbb{N}$, we have:

$$
\begin{aligned}
& \text { 1. } \tau_{C}(m) \leq \sum_{i=1}^{d}\binom{m}{i} \\
& \text { 2. If } m>d+1 \Rightarrow \tau_{C}(m) \leq\left(\frac{e m}{d}\right)^{d}
\end{aligned}
$$

Here we focus on the proof of part 1.

Part 2. can be proven via part 1 and induction on d.

Proof. It suffices to show ie. $\left|C_{T}\right|_{s}{ }^{|T|}$ \uparrow $\forall S \quad\left|C_{S}\right|<\mid\{T \subseteq S \mid C$ shatters $T\} \mid$ is always shatteral

By definition of VC dim. C does not shatter any set of size $>d$.
A set S has $\sum_{i=0}^{d}\binom{|s|}{i}$ subsets of size $<d$.
Hence, $\quad k \Rightarrow \tau_{C}(m) \leq \sum_{i=0}^{d}\binom{m}{i}$

Now, we focus on proving t by an inductive argument on the size of $S:|S|=m$.

Base case: $m=1$
S has one element \leadsto S has two subsets: ϕ, S two possible restriction: (0), (1)
if $\left|C_{S}\right|=2 \Rightarrow$ both S and ϕ are shattered

$$
k: 2=2
$$

if $\left|C_{s}\right|=1 \Rightarrow \phi$ is shattered S is not shattered

$$
k: \quad 1=1
$$

inductive step
Assume $*$ holds for any set of sic <m we want to prove $*$ for m.

Consider $\delta=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
Let s^{\prime} denote $\left\{x_{2}, x_{3}, \ldots, x\right\}$.

$$
\begin{aligned}
& Y_{1}:=\left\{\left(y_{2}, y_{3}, \ldots, y_{m}\right) \mid\right. \\
& \left.\left(0, y_{2}, \ldots, y_{m}\right) \in C_{s} \vee\left(1, y_{2}, \ldots, y_{m}\right) \in C_{s}\right\} \\
& Y_{0}=\left\{\left(y_{2}, \ldots, y_{m}\right) \mid\right. \\
& \left.\left(0, y_{2}, \ldots, y_{m}\right) \wedge\left(1, y_{2}, \ldots, y_{m}\right) \in C_{s}\right\}
\end{aligned}
$$

Observe $\quad\left|C_{s}\right|=\left|Y_{0}\right|+\left|Y_{1}\right|$

Now, we want to relate $\left|Y_{0}\right|$ and $\left|Y_{1}\right|$ to the \# subsets that C can shatter

By induction assumption:
$\left|Y_{1}\right|=\left|C_{S^{\prime}}\right| \leq \mid\left\{T \leq S^{\prime} \mid C\right.$ shatters $\left.T\right\} \mid$

$$
=\mid\left\{T \leqslant s \mid x_{1} \notin T \text { and } C \text { shatters } T\right\} \mid
$$

$\forall \quad\left(y_{2}, \ldots, y_{m}\right) \in Y$.
3 a pair of concepts c_{1}, c_{2} s.t

$$
\begin{aligned}
& c_{1}\left(x_{1}\right)=1, \quad c_{1}\left(x_{2}\right)=y_{2}, \ldots, c_{1}\left(x_{m}\right)=y_{m} \\
& c_{2}\left(x_{1}\right)=0, \quad c_{2}\left(x_{2}\right)=y_{2}, \ldots, c_{2}\left(x_{m}\right)=y_{m}
\end{aligned}
$$

differ only in x_{1}

Let C^{\prime} be the set of cell of these pairs.

$$
\left|Y_{0}\right|=\left|C_{s^{\prime}}^{\prime}\right|=\mid\left\{T \subseteq S^{\prime} \mid C^{\prime} \text { shatters } T\right\}
$$

C^{\prime} can also shatters $T \cup\{x$,

$$
=\mid\left\{T \leq S \mid x, \in T \text { and } C^{\prime} \text { shatters } T\right\}
$$

$\leq \mid\{T \leq S \mid x, \in T$ and C shatter) $T\}$

$$
\begin{aligned}
\left|C_{S}\right| & =\mid Y_{0} \overline{\left|+\left|Y_{1}\right|\right.} \\
& =\mid\left\{T \subseteq S \mid x_{1} \in T \text { and } C \text { shatter } T\right\} \\
& +\mid\left\{T \subseteq S \mid x_{1} \notin T \text { and } C \text { shatters } T| |\right. \\
& =\mid\{T \subseteq S \mid C \text { shatters } T\} \mid
\end{aligned}
$$

Fundamental Theorem of $P A C$ learning.
finite VCdim \Rightarrow Uniform Convergence

Realizable case 1

$$
O\left(\frac{V c \operatorname{dim}(C) \ln (1 / \varepsilon)+\ln (1 / \delta)}{\varepsilon}\right) \text { samples }
$$

$\Rightarrow(\varepsilon, \delta)$ - uniform convergence of C

Agnostic case:
$O\left(\frac{v C \operatorname{dim}(C)+\ln (1 / \delta)}{\varepsilon^{2}}\right)$ samples
$\Rightarrow \quad(\varepsilon, \delta)$-uniform convergence of \mathcal{C}

I this lecture, we prove an easier version.

We show:

$$
d=V(\operatorname{dim}(C)
$$

$m=O\left(\frac{d}{(\delta \varepsilon)^{2}} \cdot \log \frac{d}{\varepsilon \delta}\right)$ samples
$\Rightarrow(\varepsilon, \delta)$ - uniform convergence.

Lemma 7: Let C be a concept class with growth function $\tau_{C}(m)$. Then for every data distribution D, parameter $\delta \in(0,1)$, with probability at least $1-\delta$ over the choice of $S \sim D^{m}$, we have,

$$
\forall c \in C:\left|\operatorname{err}(c)-\hat{e r}_{k^{*}}(c)\right|<\frac{4+\sqrt{\log \left(\tau_{e}(2 m)\right)}}{\delta \sqrt{2 m}}
$$

for sufficiently large $m=O\left(\frac{d}{(\delta \varepsilon)^{2}} \log \left(\frac{d}{\varepsilon \delta}\right)\right)$

+ Saver's Lemma

$$
\tau_{C}(2 m) \leq\left(\frac{2 m e}{d}\right)^{d}
$$

\Rightarrow right hand side of $*^{*} \leq \varepsilon$
$\Rightarrow(\varepsilon, \delta)$ uniform convergence.

Proof of Lemma 1:

$$
\forall c \in C:\left|\operatorname{err}(c)-\hat{e r r}_{s}(c)\right| \leq \frac{4+\sqrt{\tau_{c}(2 m)}}{\delta \sqrt{2 m}}
$$

We show

$$
\operatorname{Si}_{S-D^{-}}\left[\sup _{c \in C}|\operatorname{err}(c)-\operatorname{err}(c)|\right] \leq \frac{4+\sqrt{z_{c}(2 m)}}{\sqrt{2 m}}
$$

The above bound implies the lemma:
if $\mathbb{E}[X] \leq A$, then by Markov's inez.

$$
\operatorname{Pr}\left[x>\frac{1}{\delta} A\right]<\frac{E[x]}{A / \delta} \leq \delta
$$

\Rightarrow Hence, with prob. $1-\delta \quad x \leq \frac{A}{\delta}$

$$
\begin{aligned}
& \operatorname{SND}_{\sim}^{m}\left[\begin{array}{l}
\sup |\operatorname{err}(c)-\hat{\operatorname{err}} S(c)|
\end{array}\right] \\
& \operatorname{err}(c)=\mathbb{E}\left[\hat{\operatorname{err}}_{s}(c)\right]
\end{aligned}
$$

Jensen's inequality: convex f

$$
\begin{aligned}
& f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]
\end{aligned}
$$

$$
\begin{aligned}
& ={\underset{S, S^{\prime} \sim D^{m}}{\mathbb{E}}\left[\begin{array}{ll}
\sup _{c \in C} & \frac{1}{m}
\end{array} \sum_{i=1}^{m} 1\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right)\right.}^{\sum_{i}} 1 \\
& \left.-\mathbb{1}\left(c\left(x_{i}\right) \neq y_{i}\right) \mid\right]
\end{aligned}
$$

Example $\quad E\left[x_{i}-x_{i}^{2}\right]=\frac{a-b^{2}}{2}+\frac{b-a^{2}}{2}$

$$
E\left[x_{i}^{\prime}-x_{i}^{2}\right]=\frac{b-a^{2}}{2}+\frac{a-b^{2}}{2}
$$

we can switch $x_{i} \longleftrightarrow x_{i}^{\prime}$

$$
\begin{aligned}
& \mathbb{I}\left(c\left(x_{i}\right) \neq y_{i}\right)-\quad 1\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right) \\
& \begin{array}{l}
1\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right)-11\left(c\left(x_{i}\right) \neq y_{i}\right)
\end{array} \\
& =-\left(1\left(c\left(x_{i}\right) \neq y_{i}^{\prime}\right)-\mathbb{T}\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right)\right) \\
& \forall \sigma=\left(\sigma, \ldots, \sigma_{m}\right) \in\{+1,-1\}^{m} \\
& \leq \sqrt{S, S^{\prime} \sim D^{n}}\left[\left.\operatorname{Sup}_{c \in C} \frac{1}{m} \right\rvert\, \sum_{i=1}^{m}\right. \\
& \left.\left.\sigma_{i} \quad\left(\mathbb{I}\left(c\left(x_{i}\right) \neq y_{i}\right)-\mathbb{I}\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right)\right)\right]\right] \\
& \leq E_{s, s^{\prime}} \quad \text { o }_{\sim_{v}\{+, 1\}^{m}}\left[\left.\begin{array}{ll}
\sup & 1 \\
c \in C
\end{array} \right\rvert\, \sum_{i=1}^{m}\right. \\
& \left.\sigma_{i}\left(\mathbb{1}\left(c\left(x_{i}\right) \neq y_{i}\right)-\mathbb{1}\left(c\left(x_{i}^{\prime}\right) \neq y_{i}^{\prime}\right)\right) \mid\right]
\end{aligned}
$$

$C_{\text {gus' }}:$

$$
\begin{aligned}
& \left\{\begin{array}{r}
\left(z_{1}, z_{2}, \ldots, z_{m}, z_{1}^{\prime}, \ldots, z_{m}^{\prime}\right) \mid \\
\exists c \in C: \forall i \in[m] \\
c\left(x_{i}\right)=z_{i}^{\prime} \\
\text { and } c\left(x_{i}^{\prime}\right)=z_{i}^{\prime}
\end{array}\right\} \\
& \leq \underset{\text { sis }}{\mathbb{E}} \mathbb{\sigma}\left[\left.\operatorname{Sup}_{\mathcal{L} \in C_{\text {Gus' }}} \frac{1}{m} \right\rvert\, \sum_{i=1}^{m}\right. \\
& \sigma_{i}\left(\mathbb{1}\left(z_{i} \neq y_{i}\right)-1\left(z_{i}^{\prime} \neq y_{i}^{\prime}\right)\right) \mid
\end{aligned}
$$

Fix s, S, and Z
Consider

$$
A_{z}\left(\sigma_{i}\right)=\sigma_{i}\left(1\left(z_{i} \neq y_{i}\right)-1\left(z_{i}^{\prime} \neq y_{i}^{\prime}\right)\right)
$$

source of randomness

$$
\begin{aligned}
& \underset{\left.\sigma_{i}-v i+1-1\right\}}{E}\left[A_{2}\left(\sigma_{i}\right)\right]=0 \\
& A_{2}\left(\sigma_{i}\right) \in[-1,1]
\end{aligned}
$$

Hoeffding bound

$$
\begin{gathered}
\left.\operatorname{Pr}_{\sigma}\left[\left|\frac{1}{m} \sum_{i=1}^{m} A z \quad\left(\sigma_{i}\right)\right|\right\rangle p\right] \\
\leq 2 \exp \left(-2 m p^{2}\right)
\end{gathered}
$$

Union Bound over $\left|C_{\text {sus }}\right|$ many 2's:

$$
\begin{aligned}
& \operatorname{Pr}\left[\max _{Z \in C_{\text {sus }}}\left|A_{2}(\alpha)\right|, p\right] \\
& \quad \leq 2\left|C_{\text {sus }}\right| \cdot \exp \left(-2 m p^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[\sigma]{\mathbb{m a g i c}}\left[\max _{\mathcal{Z} \in C_{\text {Sus' }^{\prime}} \mid} A_{Z}(\sigma) \mid\right] \\
& \int_{0}^{\infty} \operatorname{Pr}[x, t] d t \leq \frac{4+\sqrt{\log \left|C_{\text {sus }}\right|}}{\sqrt{2 m}} \leq 2(2 m) \\
& \Rightarrow \underbrace{E}_{s}\left[\sup _{c \in C}\left|\operatorname{err}(c)-\hat{\operatorname{err}}_{s}(c)\right|\right] \\
& \leq \frac{4+\sqrt{\log Z_{c}(2 m)}}{\sqrt{2 m}} \\
& \Rightarrow k k k
\end{aligned}
$$

