COMP 677:

Seminar in Learning Theory

Lecture 1

Maryam Aliakbarpour

Fall 2023

Today's lecture

- Introduction
- Class format
- Policies
- Introduction to the topic

Introduction

Instructor: Maryam Aliakbarpour

Email: <u>maryama@rice.edu</u>

Office hour: By appointment (email me)

Lectures: Wednesdays 4-5pm, Duncan Hall 1075

Website: https://maryamaliakbarpour.com/courses/23F/seminar.html + Canvas

Your turn!

Class objectives

Studying fundamental problems in learning theory from a new perspective:

- Computational aspects: limited time or memory
- Societal aspects: privacy and fairness

Practicing research soft skills:

- How to approach a problem
- How to review / write a paper
- Presenting technical material

We will return to this!

Class Prerequisites

- solid understanding of mathematical proofs
- basic algorithms, and probability
- A graduate level course in algorithms or machine learning is recommended.

Class format

- In each class, we focus on one paper.
- Before class:
 - Reading assignment: read the paper
 - Provide a review on canvas
- Presentation:
 - A student presents the paper (45 min presentation)
- Questions / Discussion

Class format

- A list of suggested papers: <u>Syllabus</u>
- You may also pick papers that are not listed but are relevant to the topic of the class.
- Pick two* papers.
- Fill out this form by this Monday: <u>https://forms.gle/Qu3duqfyc1QoY5Dp9</u>
- First presenter? (By Friday)

Class format: presentation

A 45-minute long presentation:

- Introduction: What and why?
- Related work
- Problem definition
- Solution
- Technical part*

Class format: presentation

Practice your talk! (many times)

(Optional) Meet with me on Friday or Monday before your presentation.

• Set an appointment (maryama@rice.edu)

Class format: reading assignment

Read the paper before class, and be present.

Think of it as a mini-review.

Canvas assignment:

- Summary of the paper.
- Your opinion: Strengths / Limitations. Next steps?

Class format: class project

Only if you register for 3-credit

Two options:

- Survey of results
- Research project

Policies

Read <u>Syllabus</u>

- An inclusive environment
- Rice Honor Code
- Disability Resource Center
- Wellbeing and Mental Health
- Title IX Responsible Employee Notification

Our topic

Our daily activities produce vast amounts of data.

Our daily activities produce vast amounts of data.

How can we extract meaningful information?

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

Estimation:

Estimate parameters of distribution e.g. mean, variance

Testing:

Test distribution *D* has a specific property e.g. uniformity, unimodal

Learning:

Learn distribution *D* in a class e.g. Gaussians

Classification:

Learn a classifier from labeled data e.g. learning half-spaces

New determinate a spects

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

This talk

Part I: Inference with privacy

Part II: Inference with limited memory

Sensitive data requires privacy preserving algorithms.

Privacy

Learn about community, but not individuals

Anonymization \neq not-identifiable

Global information leaks information about individuals!

Example: Average net worth of patients in oncology

Differential privacy

Mathematical formulation

Not ambiguous Irrefutable claims

Extensive use in **practice**: Apple, Google, US census

Differential privacy (central)

Differential privacy

Output should not depend on a single data point.

Differential privacy

 ϵ -differentially private algorithm A:

- ► Any possible output *Y*
- ► Two neighboring datasets *X*, *X*' s.t. they differ in one sample

[Dinur and Nissim'03, Dwork, McSherry, Nissim, and Smith'06, Dwork'06]

Laplace Mechanism

For two neighboring datasets *X*, *X*' such that |X - X'| = 1, the sensitivity of *f* is:

$$\Delta f \triangleq \max_{X,X'} |f(X) - f(X')|$$

Can make f a ξ -differentially private function by adding Laplace noise to it.

This talk

Part I: Inference with privacy

Part II: Inference with limited memory

Why limited memory?

Size of working memory < size of data

Facilitates communication and processing of distributed data

Insightful: what summarizes the data

Memory restriction can affect learning drastically!

- [Raz, FOCS. 2016]
 - Parity learning problem
- [Chien, Ligett, McGregor. ITCS 2010] Robust statistics and distribution testing
- [Diakonikolas, Gouleakis, Kane, Rao. COLT 2019] Distribution testing
- [Sharam, Sidford, Valiant. STOC 2019] Memory-Sample Tradeoffs for Linear Regression
- [Brown, Bun, Smith. COLT 2022]

Memory lower bounds for sparse linear predictors

And many more...

Memory restriction can affect learning drastically!

[Raz'16]: Fast learning requires good memory!

Parity learning problem:

- Goal: find $w \in \{0,1\}^n$
- Samples: a random $x \in \{0,1\}^n$ and $w \cdot x$

By Gaussian elimination $O(n^2)$ bits of memory O(n) samples [Raz'16]: Any algorithm using

 $\leq \frac{n^2}{25}$ bits of memory

needs exponentially many samples

Example I: Private Hypothesis Testing

Joint work with Daniel Kane (UCSD), Ilias Diakonikolas (UW Madison), Ronitt Rubinfeld (MIT)

Sensitive data requires privacy preserving algorithms.

Goal:

Design testing algorithms:

- Accurate
- Optimal number of data points
- Privacy preserving

Active area of research: [Rogers, Roth, Smith, Thakkar'16], [Gaboardi, Lim, Rogers, Vadhan'16], [Cai, Daskalakis, Kamath'17], [A, Diakonikolas, Rubinfeld'18], [Acharya, Sun, Zhang'18]: [Bun, Kamath, Steinke, Wu'19], [Canonne, Kamath, McMillan, Smith, Ullman'19], [Canonne, Kamath, McMillan, Ullman, Zakynthinou'20], [Vepakomma, Amiri, Canonne, Raskar, Pentland'22]

Pain level after treatment:

2, 10, 3, 1, 2, 9, 3, 1

Pain level in the control group: 6, 2, 7, 2, 3, 6, 2, 3

Number of sold items after price drop: 6, 2, 7, 2, 3, 6, 2, 3

Our problem: closeness testing

Closeness testing implies independence testing

 $(X,Y) \sim p$. Question: Are X and Y independent? p_1 and p_1 are the marginals X and Y are independent $p = p_1 \times p_2$ $\iff |p - p_1 \times p_2|_1 \ge \Theta(\alpha)$ X and Y are far from being independent [Batu, Fischer, Fortnow, Kumar, Rubinfeld, White'01]

Our results

• New flattening-based (FB) private tester for closeness testing

Characterizing the non-private reductions that results in private testers automatically

Our results

New flattening-based (FB) private tester Why this tester?

- Exploits the underlying structure of distributions
- Only known optimal results for some problems

Our result on closeness: privacy is almost free!

Our results on other properties

• New ϵ -DP tester for independence (domain = $[n] \times [m]$ when $m \le n$)

$$O(n^{2/3} m^{1/3}/\alpha^{4/3} + \sqrt{n m}/\alpha^2 + \sqrt{n m \log n}/(\alpha \epsilon) + 1/(\alpha^2 \epsilon))$$

Non-private cost

Cost of privacy

- New ϵ -DP tester for testing closeness with unequal sized samples
- Tighter result for closeness/uniformity/identity

Techniques

Sub-linear?

An alternative way:

Frequency of element *i* in the sample set = X_i

Empirical distribution p

Statistic $Z \coloneqq \sum_{i=1}^{n} (X_i - Y_i)^2 - X_i - Y_i$

Empirical distribution q

Frequency of element *i* in the sample set = Y_i

Sub-linear? Potential solution

Statistic:
$$Z \coloneqq \sum_{i=1}^{n} (X_i - Y_i)^2 - X_i - Y_i$$

Sample complexity = $\Omega\left(\frac{n \cdot \max(|p|_2, |q|_2)}{\alpha^2}\right) \propto \max \ell_2$ -norm of p and q

How flattening reduces ℓ_2 -norm

Not easy to privatize

Flattening technique: strong, but sensitive...

Hard to make it private!

Noise make statistics similar

Noise make statistics similar

Our algorithm: derandomization

Not independent trials of the algorithms

Flattening guarantees only worked in average Requires a new analysis

• Analyze how Z changes after changing one sample

- Add noise to hide the change
- Does noise affect accuracy?

Exponential time

Alternative approach with linear time in sample size

Our result on closeness: privacy is almost free!

