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Introduction

Instructor: Maryam Aliakbarpour

Email: maryama@rice.edu

Office hour: By appointment (email me)
Lectures: Wednesdays 4-5pm, Duncan Hall 1075

Website: https://maryamaliakbarpour.com/courses/23F/seminar.html + Canvas

Your turn!


mailto:maryama@rice.edu
https://maryamaliakbarpour.com/courses/23F/seminar.html

Class objectives

Studying fundamental problems in learning theory from a new perspective:

« Computational aspects: limited time or memory

» Societal aspects: privacy and fairness
We will return to this!

Practicing research soft skills:
 How to approach a problem

« How toreview /write a paper

* Presenting technical material



Class Prerequisites

» solid understanding of mathematical proofs
» basic algorithms, and probability

« Agraduate level course in algorithms or machine learning is recommended.



Class format

In each class, we focus on one paper.

Before class:
» Reading assignment: read the paper
* Provide areview on canvas

Presentation:
« Astudent presents the paper (45 min presentation)

Questions / Discussion



Class format

A list of suggested papers: ==—p Syllabus

You may also pick papers that are not listed but are relevant to the topic of the
class.

Pick two* papers.

Fill out this form by this Monday:
https://forms.gle/Qu3duqfyc1QoY5Dp?

« First presenter? (By Friday)


https://maryamaliakbarpour.com/courses/23F/Syllabus.pdf
https://forms.gle/Qu3duqfyc1QoY5Dp9

Class format: presentation

A 45-minute long presentation:

* Introduction: What and why?

Related work

Problem definition

Solution

Technical part*



Class format: presentation

Practice your talk! (many times)
(Optional) Meet with me on Friday or Monday before your presentation.

« Set an appointment (maryama@rice.edu)




Class format: reading assignment

Read the paper before class, and be present.
Think of it as a mini-review.
Canvas assignment:

 Summary of the paper.

* Your opinion: Strengths / Limitations. Next steps?




Class format: class project

Only if you register for 3-credit
Two options:
* Survey of results

» Research project




Policies

Read Syllabus

* Aninclusive environment

* Rice Honor Code

» Disability Resource Center

* Wellbeing and Mental Health

« Title IXResponsible Employee Notification


https://maryamaliakbarpour.com/courses/23F/Syllabus.pdf

Our topic




Our daily activities produce vast amounts of data.

Location
Social history

media %
browsing )
~ (0

Financial
transactions




Our daily activities produce vast amounts of data.

Location
Social history

media . ;0?1

browsing

Financial

transactions o

How can we extract 7
meaningful L, {
information? )



Statistical inference

Information
about D

Data:
samples fromD —— Algorithm
X1)X2, e Xm

Image from: https://tilics.dmi.unibas.ch/the-turing-machine



Statistical inference Estimation:

Estimate parameters of
distribution

e.g. mean, variance

Testing:

Test distribution D has a specific
property

e.g. uniformity, unimodal

Data:
samples fromD ——

xl’xz, ---,xm L .
_ earning:
Learn distribution D in a class

e.g. Gaussians

Classification:
v Learn a classifier from labeled data
e.g. learning half-spaces




Nassijo gloaindetstaffctien dye
(et fet Hatagbime aspossibirese aspects

Computational
aspect:

Memory / Time

Sample complexity \/ Societal aspect:

# data points Privacy / Fairness
L

7~

Accuracy

Dependencies on the
error parameter




Statistical inference

Data:

samples fromD ——

x1, xz, ---,xm

/A

o

|gorithm with

limited time
private

fair

~

limited memory

%

Information
about D

Image from: https://tilics.dmi.unibas.ch/the-turing-machine



This talk

Part |: Inference with privacy

Part Il: Inference with limited memory



o) (‘ |
\

Sensitive data requires privacy preserving
algorithmes.



Privacy

e Learn about community, but not individuals

Anonymization = not-identifiable

e Global information leaks information about individuals!

Example: Average net worth of patients in oncology



Differential privacy

e Mathematical formulation

Not ambiguous I [opoens
I oh your

. E 'Phone,

Irrefutable claims i s

on your

iPhone.

apple.com/privacy

Extensive use in practice:

@
Apple, Google, US census



Differential privacy (central)

—
S

Dataset
# Processing via

# trusted server > Output

o



Differential privacy

Output should not depend on a single data point.

/\/—\
\—/v

Dataset Dataset

—— Output stays similar.

e
e

Bob Alice



Differential privacy

e-differentially private algorithm A:

» Any possible output Y
» Two neighboring datasets X, X’ s.t. they differ in one sample

Prl[A(X) =Y] < e€ Pr[A(X') =Y]

ﬁ ﬁ Privacy

[Dinur and Nissim’03, Dwork, McSherry, Nissim, and Smith‘06, Dwork’06]



Laplace Mechanism

For two neighboring datasets X, X’ such that | X - X’| = 1,
the sensitivity of f is:

Af £ gD |f(X) — fFXT)]

Can make f a ¢-differentially private function by adding Laplace noise to it.

Laplace

noise
{ Function f(X) } >
+ Lap(Af/$)




This talk

Part |: Inference with privacy

Part |l: Inference with limited memory



Why limited memory?

| . . 0105 0t (@)
Size of working memory < size of data ' '
I— DATA STREAM —I

Facilitates communication and
processing of distributed data

Insightful: what summarizes the data



Memory restriction can affect learning drastically!

[Raz, FOCS. 2016]
Parity learning problem
[Chien, Ligett, McGregor. ITCS 2010]
Robust statistics and distribution testing
[Diakonikolas, Gouleakis, Kane, Rao. COLT 2019]
Distribution testing
[Sharam, Sidford, Valiant. STOC 2019]
Memory-Sample Tradeoffs for Linear Regression
[Brown, Bun, Smith. COLT 2022]
Memory lower bounds for sparse linear predictors

And many more...



Memory restriction can affect learning drastically!

[Raz’16]: Fast learning requires good memory!

Parity learning problem:
- Goal: find w € {0,1}"

- Samples: arandom x € {0,1}"* and w - x

By Gaussian elimination
0(n?) bits of memory

0(n) samples

.

/ [Raz’16]: Any algorithm using \

n? .
S bits of memory

needs exponentially many samples

/




Example I:
Private Hypothesis Testing

Joint work with Daniel Kane (UCSD), llias Diakonikolas (UW Madison),
Ronitt Rubinfeld (MIT)



Hypothesis testing

Does D have a particular
property or not?

Accept
— X1, Xy ey Xy — Algorithm — or

Reject

Distribution
D




App|icati0ns E-commerce: ¢

Efficacy of a new
Social sciences: ad. strategy

Correlation between Technical property °

gender and income
Mixture of Gaussians

® Clinical trials:

treatment efficacy

f Hypothesis Testing j
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Sensitive data requires privacy preserving
algorithmes.



Goal:

Design testing algorithms:

- Accurate

- Optimal number of data points
- Privacy preserving

Active area of research: [Rogers, Roth, Smith, Thakkar’16], [Gaboardi, Lim, Rogers, Vadhan’16],
[Cai, Daskalakis, Kamath’17], [A, Diakonikolas, Rubinfeld’18], [Acharya, Sun, Zhang’18]: [Bun,
Kamath, Steinke, Wu’19], [Canonne, Kamath, McMillan, Smith, Ullman’19], [Canonne, Kamath,

McMillan, Ullman, Zakynthinou’20], [Vepakomma, Amiri, Canonne, Raskar, Pentland’22]



Our problem:

Closeness testing:

Are two distributions equal?




Example: treatment efficacy

Closeness testing:

Are two distributions equal?

Pain level after treatment: 2,10,3,1,2,9, 3, 1

Pain level in the control group: 6,2,7,2,3,6,2,3



Example: treatment efficacy

Closeness testing:

Are two distributions equal?

Number of sold items per day: 2,10,3,1,2,9, 3,1

Number of sold items after price drop: 6,2,7, 2, 3,6, 2, 3



Our problem:

Distribution
p over [n]

Distribution
q over [n]

with prob. 0.9

closeness testing

iid samples:
X1,X2, ., Xg

iid samples:
Y1, Y25 2 Ys

[ Accept

Output =" - Reject

[Batu, Fortnow, Rubinfeld, Smith, White’00]

% Tester

ifg=p

if p and g are a-far
in £,-distance




/
Testing
k-histograms
N
/
Independence
P = P1XP2
-

~

Closeness

Testing

Mixture

testing

Uniformity
p = uniform

4 )
|dentity
Knownp = q
LN J

\
Closeness
Unequal sized
sample sets
/




Closeness testing implies independence testing

X, Y) ~p.
Question: Are X and Y independent?

p, and p, are the marginals

—

X and Y are independent P = P1XDP2

X and Y are far from being independent [P — P1Xp2l1 = 0(a)

—

[Batu, Fischer, Fortnow, Kumar, Rubinfeld, White’01]




Our results

e New flattening-based (FB) private tester for closeness testing

Characterizing the non-private reductions
that results in private testers automatically

® Private testers for other properties

Differentially private

Testing
Property P . FB Closeness
e.g., m testing
independence

[A, Diakonikolas, Kane, Rubinfeld NGUI‘|PS19] Non-private tester by [Diakonikolas, Kane’16]



Our results

New flattening-based (FB) private tester
Why this tester?
- Exploits the underlying structure of distributions

- Only known optimal results for some problems

Differentially private

Testing
Property P

FB Closeness
testing

Reduction »

[A, Diakonikolas, Kane, Rubinfeld NeurlPS19]




Our result on closeness: privacy is almost free!

Theorem ] [A, Diakonikolas, Kane, Rubinfeld’19]

There exists a e-private algorithm for testing closeness of two distributions p
and g over domain of [n] with error parameter a that uses

o \/n \/n
| a4/3 | a\/e
|
samples from p and g. Non-private Cost of

cost privacy




Our results on other properties

- New ¢e-DP tester for independence (domain = [n]x[m] when m < n)

0(m?3 m'/3/a*/? + ynm/a*+ nmlogn /(ae)*+ 1/(a’e))

L J \ J
! I

Non-private cost Cost of privacy

* New €-DP tester for testing closeness with unequal sized samples

* Tighter result for closeness/uniformity/identity



Techniques




How? Simple approach

WTJL A~ 1HH}7

Q0 (ﬁ) samples |

o2

Distributi al distribution p

n Too much datal

WTJL‘“} Aﬁqhﬂ—

Distribution g Empirical distribution g



Frequency of element i in the sample set = X;

Sub-linear?

An alternative way:

Statistic Z ==Y . (X; = Y))* — X; - Y, FH_H_H_H}
I [ ]

Empirical distribution p

p—qly =2a <«— LargeZ rH'H_Hij

Empirical distribution q

Frequency of element i in the sample set =Y;



Sub-linear? Potential solution
Statistic: Z ==Y ;(X; = Y))* — X; - Y,

n-max(|p|2,|ql2)
az

Sample complexity = Q( ) o« max ¥,-norm of p and q

{ No change in ;- }
low distance!
!/
p /\ p
p=q p =q
qf A ¢ ]

p—qli =« p'—q'l1 =«

—




How flattening reduces £,-norm

- ~ /\ On a new domain

Wﬂ‘w W:H—} THIHTHTHE

Distribution p Detecting large elements Distribution p’

1

How? Draw samples and see frequencies Ellp'lz] < IF|

Flattening Samples F: [ (1 @ 01 [ # bins = frequency in F + 1

[Diakonikolas, Kane’'16]



Testing closeness via flattening

| Flattening:
Flattening —_— Creates a
samples '
L mapping y
4 h l i \
Test samples M?rz?nto ,sae:gplle >
from p and g ’ !
\_ / - g

}

[ Test p'and ¢’ J
[Diakonikolas, Kane’'16]




Not easy to privatize

Flattening technique: strong, but sensitive...

Flattening samples: [ [0 []

Flattening samples: [0

- .

.

Distribution p’

[0

.

Distribution p’

Hard to make it private!

N
e

[ Very different Z }




Noise make statistics similar

+ noise

. [ ] ,
Flattening samples: F/ A

Find a more stable Z 2,

Flattening samples:

- Similar

\

N
L Higher difference of Z’s J |—| L More noise




Noise make statistics similar

+ noise

. [ ] ,
Flattening samples: F/ A

Find a more stable Z 2,

Flattening samples:

- Similar

\

N
L Higher difference of Z’s J |—| L More noise




Flattening Test

samples samples
Sample set X EOEECDERNECOCDC EmEOD
Sample set X’ EOENCD ENEC0 0 ENEOO

[ High sensitivity }




Flattening Test

samples samples
Sample set X EOEECDERNECOCDC EmEOD
Sample set X’ EOENED ENENC D ENEDO

Not too high
sensitivity




Our algorithm: derandomization

Sample set X

Permutation of X
according to m;

Permutation of X
according to 7o

Reduction

procedure

Computes
Z

Reduction

procedure

Computes
Z

Permutation of X
according to (54 )

Reduction
procedure

v

Computes
Z

¥

Z

Computes | mpm

Add Laplace Noise | ==
to obtain Z

Compare Z with a threshold 7.
If Z <, output accept.
Otherwise; output reject.

» Try all partitions for flattening and test

samples

» Compute the mean of statistics

New statistic: Z := E[Z]



Proof sketch: Why Z works

-

Accuracy

~

-

o

Privacy
guarantee

-

)

o

~
Efficiency: number
of samples
and time

)




Proof sketch: Why Z works

-

o

Accuracy

\

J

e Notindependent trials of the algorithms

Flattening guarantees only worked in average
Requires a new analysis

-

o

Privacy
guarantee

-

)

o

~
Efficiency: number
of samples
and time

)




Proof sketch: Why Z works

-

\_

Accuracy

~

)

/

\_

Privacy
guarantee

-

)

o

~
Efficiency: number
of samples
and time

)

® Analyze how 7 changes after changing one sample

Add noise to hide the change

@ Does noise affect accuracy?



Proof sketch: Why Z works

-

o

Accuracy

~

)

e Exponential time

Alternative approach with linear time in sample size

-

o

Privacy
guarantee

/

J

\_

~
Efficiency: number
of samples
and time
%




Our result on closeness: privacy is almost free!

Theorem ] [A, Diakonikolas, Kane, Rubinfeld’19]

There exists a e-private algorithm for testing closeness of two distributions p
and g over domain of [n] with error parameter a that uses

o \/n \/n
| a4/3 | a\/e
|
samples from p and g. Non-private Cost of

cost privacy




